
BGP Safety with Spurious Updates
Martin Suchara, Alex Fabrikant, and Jennifer Rexford

Computer Science Department, Princeton University
Email: {msuchara, afabrika, jrex}@cs.princeton.edu

Abstract—We explore BGP safety, the question of whether a
BGP system converges to a stable routing, in light of several BGP
implementation features that have not been fully included in the
previous theoretical analyses. We show that Route Flap Damping,
MRAI timers, and other intra-router features can cause a
router to briefly send “spurious” announcements of less-preferred
routes. We demonstrate that, even in simple configurations, this
short-term spurious behavior may cause long-term divergence in
global routing. We then present DPVP, a general model that uni-
fies these sources of spurious announcements in order to examine
their impact on BGP safety. In this new, more robust model of
BGP behavior, we derive a necessary and sufficient condition
for safety, which furthermore admits an efficient algorithm for
checking BGP safety in most practical circumstances — two
complementary results that have been elusive in the past decade’s
worth of classical studies of BGP convergence in more simple
models. We also consider the implications of spurious updates for
well-known results on dispute wheels and safety under filtering.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1], the de facto in-
terdomain routing protocol in the Internet, offers autonomous
systems (ASes) the flexibility to specify their custom routing
policies. Unfortunately, this flexibility may result in policy
choices that cause persistent oscillations. Such oscillations
unnecessarily increase the number of BGP updates and nega-
tively impact network traffic. Over the past decade, researchers
have developed a good understanding of which combinations
of routing policies lead to oscillations [2]–[8]. Most of these
results were based on an abstract model of the interdomain
routing system — namely the Simple Path Vector Protocol
(SPVP) [9] — that captures how each node selects the highest-
ranked path consistent with its neighbors’ decisions.

This paper shows that local engineering decisions such
as BGP timers and internal router structures can produce
short-term artifacts that lead to protocol oscillations not well
modeled by SPVP. To capture how these local phenomena
affect global convergence, we introduce an extension of SPVP
called the Dynamic Path Vector Protocol (DPVP). Although
DPVP is seemingly more complicated than SPVP, it actually
yields to analysis more easily: we show that DPVP admits
a necessary and sufficient condition of convergence. Further-
more, we give an algorithm that for most realistic settings
efficiently determines whether a DPVP instance is safe, i.e.,
whether the BGP system as modeled by DPVP converges.

A. Spurious Selection of Lower-Ranked Routes

Earlier studies of interdomain routing assume that routers
select and announce the most-preferred available route. How-
ever, routers in practice may temporarily announce other

recently-available routes, or even withdraw a route when the
destination appears reachable. We call such unexpected an-
nouncements and withdrawals spurious updates. These spuri-
ous updates can be caused by several router-level mechanisms
that delay the propagation of update messages (to reduce
overhead and improve stability) or limit visibility into the
alternate routes (to improve scalability), including:

• Route flap damping [10]: Route flap damping temporar-
ily suppresses a route if it appears unstable. As a result,
a router may temporarily select a less-preferred route.

• MRAI timers [11]: The Minimum Route Advertisement
Interval (MRAI) timer paces BGP update messages. De-
laying message delivery can cause a router to temporarily
select a lower-ranked alternate route.

• Router queuing mechanisms: The BGP message queues
between routers delay the delivery of update messages.
These queues, coupled with optimizations that stop gen-
erating new messages when the queue grows large, can
lead to delays in selecting the highest-ranked route.

• Cluster routers: Large routers are distributed,with BGP
sessions terminating on different processor blades. To
improve scalability, these blades do not exchange full in-
formation with each other, which may lead to a temporary
selection of a less-preferred route.

• Proposed router extensions: Extensions to the BGP
route-selection process were proposed to improve router
reliability [12] or to reduce convergence time [13]. This
changes the timing of routing decisions.

All spurious updates share two common properties: (i) a
router can only send spurious updates for a short time after
receiving information changing its most preferred route, and
(ii) spurious updates are based on routes that have been
recently available (including spurious withdrawals because “no
route” is always available). DPVP allows any spurious update
with these properties. We argue that such model is general
enough to capture all spurious updates, but at the same time
we show that the model is not overly broad.

Just as local routing policies can affect global conver-
gence [9], these local engineering decisions have global
consequences—by triggering oscillations and slowing con-
vergence exponentially. Eliminating all sources of spurious
updates would require major changes to router design and the
BGP protocol. Some of these mechanisms are important for
reducing protocol overhead and improving scalability, making
it unappealing to eliminate them entirely. Protocol designers,
router designers, and network operators could strive to reduce

2

the frequency and duration of spurious updates. However, it
is not clear that such a quest is warranted or plausible. Rather
than advocating for a world free of spurious updates, we argue
for a better understanding of their consequences.

B. DPVP Convergence

While allowing spurious updates shrinks the set of BGP
configurations that are safe from oscillations, we establish that
most of the well-studied situations deemed safe under SPVP
remain safe even under DPVP. In particular, we strengthen the
SPVP-based results of [9] to show that even DPVP is safe in
a network without a “dispute wheel” structure. Thus, spurious
updates do not affect the large body of research on safety in
dispute-wheel-free settings. In contrast, BGP safety in more
general settings, as well as convergence time, can be adversely
affected by spurious updates, as illustrated in Section VI.

Our main positive result on convergence is a combinato-
rial necessary and sufficient characterization of safe DPVP
instances, which is tractable under most typical settings. We
show that a DPVP instance is unsafe if and only if it admits a
certain combinatorial structure we call a “CoyOTE” (explained
in Section VIII). Although DPVP adds the “complexity” of
spurious updates over SPVP, this characterization is surpris-
ingly nice in several aspects that have been elusive for SPVP:
• Bijectivity: The absence of CoyOTEs is necessary and

sufficient. Prior work has only yielded sufficient but
not necessary [2], [5]–[7], [14], or necessary but not
sufficient [3], [8] conditions of convergence.

• Tractability in most common cases: Checking whether a
network admits a CoyOTE under general routing policies
is NP-complete, just like the weaker question of checking
for the sufficient-only condition of No-Dispute-Wheel
[9]. Luckily, we were able to find a polynomial time
algorithm that verifies safety of BGP configurations for
virtually any policy used by network operators in practice.

• Verifiability: Given a CoyOTE structure, one can easily
verify its validity as a proof that a network is unsafe.
On a more theoretical note, this also places the formal
problem of DPVP safety in complexity class CoNP, rel-
atively much easier than the PSPACE-complete problem
of checking safety in a comparable SPVP setting [15].

Roadmap

In Section II we review the Stable Path Problem (SPP),
a general theoretical framework for describing interdomain
routing. In Section III we formally introduce our DPVP model
of BGP built on top of SPP that captures the effects of spurious
updates on worst-case BGP convergence. To demonstrate
DPVP’s versatility and applicability, Section IV describes
a variety of real and proposed router behaviors that could
cause temporary announcements of lower-ranked routes, and
demonstrates global oscillations caused by these behaviors, yet
not predicted by the classical SPVP model of BGP. Section V,
conversely, establishes that DPVP is not over-broad: we show
that any sequence of events allowed by DPVP might indeed
occur from combinations of the above causes. Section VI

shows examples of theoretical results in the literature that,
while correct under the SPVP model, no longer hold in the
presence of spurious updates. We show the No-Dispute-Wheel
DPVP safety condition in Section VII, and the necessary and
sufficient conditions for safety in Section VIII. Section IX
presents an algorithm for checking DPVP safety in polynomial
time for all “realistic” BGP policies. Finally, Section X shows
that this “realistic policy” constraint is necessary — allowing
truly arbitrary policies makes it NP-complete to verify safety.

II. THE STABLE PATHS PROBLEM (SPP)

Here we review the Stable Paths Problem (SPP) due to
Griffin et al. [4]. The reader familiar with the SPP framework
may proceed directly to Section III.

The SPP [4] consists of a graph where each node represents
a single BGP speaker, and a fixed node which all other nodes
try to reach. Each node has its own set of permitted paths to the
origin, and a ranking function that ranks the permitted paths
in the order of preference. A solution of the SPP is a global
assignment of nodes to permitted paths such that each node
is assigned the highest ranked path that can be constructed
based on the paths assigned at neighboring nodes. The formal
definition of SPP follows.

The simple undirected graph G = (V,E) with nodes V =
{0, 1, 2, ..., n} represents the network topology. Node 0 is the
address origin and all other nodes try to establish a path to
the origin. Let neighbors(v) denote the neighbors of node v.

Paths are represented as a sequence of nodes (vk
vk−1...v1v0) where for each k ≥ i > 0 we have (vi, vi−1) ∈
E. An empty path is denoted ε. If two paths P and Q are not
empty, and the last node in P is the same as the first node
in Q, the concatenation of the two paths is denoted PQ. A
subpath of the original path P = (vkvk−1...v1v0) from node
vi to vj for some i > j is P [vi, vj], and P [vi] denotes a
subpath from vi to the origin. We use v ∈ P to denote that
node v appears in path P .

The permitted paths to the origin are explicitly specified
for each node. The set of permitted paths for each v ∈ V is
Pv . Any path P that appears in the set is permitted at the
node v. P0 is well defined and contains the only valid path
to the origin, i.e., the empty path ε. Let the collection of all
permitted paths be P = {Pv|v ∈ V }.

Route preference of each node v ∈ V is captured by its
ranking function λv . If two paths P1, P2 ∈ Pv and λv(P1) <
λv(P2) then P2 is preferred to P1 by v. Let the collection of
all ranking functions be Λ = {λv|v ∈ V }.

Additional requirements pertain to the permitted paths and
their ranking. For each λv and Pv we require:

(i) Paths are simple: every non-empty path in Pv is a
simple path from v to the origin.

(ii) Empty path permitted: Pv contains the empty path ε.
(iii) Empty path lowest ranked: λv(ε) < λv(P) for all P ∈
Pv .

(iv) Strictness: if λv(P1) = λv(P2) then either P1 = P2 or
the first edge of the two paths is the same.

3

A path assignment is a function π that maps each node v
to a path in Pv . π(v) = ε denotes that node v is not assigned
a path to the origin. We write a path assignment as a vector
(P1, P2, ..., Pn) where π(v) = Pv , and the path of the origin
to itself is omitted. Let choices(π, v) be the set of all possible
permitted paths at v that extend the paths assigned to their
neighbors:

choices(π, v) =

{
{(v u)π(u)|(v, u) ∈ E} ∩ Pv v 6= 0
{ε} o.w.

Let W be a subset of permitted paths Pv such that each path
has a distinct next hop. The best path in W is:

best(W, v) =

{
P ∈W with maximal λv(P) W 6= ∅
ε o.w.

The path assignment π is stable at node v if π(v) =
best(choices(π, v), v).

The SPP specification is a triple S = (G,P,Λ) consisting
of the graph, permitted paths, and ranking functions. The spec-
ification S is solvable if there exists a stable path assignment
π for S, otherwise it is unsolvable.

III. DPVP: BGP MODEL WITH SPURIOUS UPDATES

To study the dynamic properties of BGP, we introduce
the Dynamic Path Vector Protocol (DPVP), a formal model
that allows transmission of stale information in spurious route
updates. The DPVP model specifies the dynamics of routing
information exchange between routers in the SPP framework.
Section III-A informally explains how we model spurious
updates. Then, Section III-B defines DPVP dynamics by
specifying how a node exchanges routing information and
selects a preferred route. A convenient shorthand notation
that provides a compact description of a dynamic evolution of
the DPVP model is introduced in Section III-C.

A. Modeling the Spurious Updates

For a short period after receiving information that changes
the best path, a router may temporarily transmit stale in-
formation in the form of spurious route announcements or
withdrawals. An upper bound on the duration of the spurious
behavior is required to prevent propagation of arbitrarily old
information. The DPVP model introduces a universal fixed
constant τ 1 that serves two purposes. First, it limits the interval
after a route change at node v during which stale information
may propagate from that node. Second, any stale information
that propagates from node v at time t must have been available
at node v at some point in the time interval [t− τ, t].

Specifically, the constant τ serves as an upper bound on the
communication delay caused by queuing delays, the MRAI
timer, the suppression period of route flap damping, and any
other source of spurious behaviors, current or future. Indeed,
we deliberately do not model the specific sources of spurious
updates, so as to not limit our model to the sources thus far

1Stability of an SPP instance in the DPVP model is independent of the
actual numerical value of τ .

observed. Surely other sources may be buried deep inside
current router designs, or may arise in the future, and we
assert that modeling all of them with a generic finite cutoff
is the right approach. That is, we expect that any future
design decision that violates this model (i.e., potentially sends
spurious updates indefinitely in an otherwise-stable system)
would not be accepted by the network operator community.

B. Dynamic Path Vector Protocol (DPVP)

The current time of a global clock is denoted by t.
The internal state maintained by each node v consists of

the following. The assigned path π(v) represents the most
preferred route that is consistent with the information received
by the node at the present time. The structure rib-in(v ⇐ w)
maintained by node v contains the most recently processed
information received from node w. The set recentRts(v)
contains all routes that node v has had recently available. This
set includes any route that is available at the present time t
according to the information in the rib-in structure, as well
as any route that was available in the time interval [t − τ, t].
The state also includes variable stableTime(v) which encodes
information about stability of the node as defined below.

The stability of a node determines the properties of the
information transfer from that node. The node v is stable if
t ≥ stableTime(v) and it is not stable otherwise. If a node v
is stable, any information transfer in the system concerning
the assigned path π(v) must be accurate, i.e., the neighbors
of node v learn the correct most recent route π(v). However,
if a node is not stable, then the neighbors may receive stale
information. The stale information received from node v may
include any route from the set recentRts(v).

The dynamic route information exchange is facilitated by
edge activations. Simultaneous edge activations are allowed.
When the edge (w, v) activates, the process shown in Figure 1
is executed. The “if” branch on lines 2–3 is executed if at the
time of activation the node w is stable. The rib-in(v ⇐ w)
variable is updated with the most recent information from node
w. If node w is not stable, then lines 4–6 are executed, and
node v learns information that is potentially stale. Stale infor-
mation either contains a route withdrawal, or announcement
of some recently available route at node w. The commands
on lines 7–9 update the list of the recently available routes
recentRts(v). Newly available routes are added, and if a route
becomes unavailable at time t, it is scheduled for removal from
recentRts(v) at time t + τ . Finally, the if statement on lines
10–12 determines whether the best route available to node v
consistent with the information received thus far changes. If
the route changes then π(v) is updated accordingly and the
node is marked as unstable for a time period τ .

An edge activation sequence σ of sets (E0, E1, . . .) has Et
containing the edges that are activated at time t. An activation
sequence is fair if each edge e ∈ E appears in the sequence
infinitely often, i.e., all node pairs continue exchanging routing
information indefinitely.

A vertex activation sequence ρ of sets (V0, V1, . . .) has Vt
containing the vertices that are activated at time t. A vertex

4

activate(v ⇐ w)

1: old-rib-in =rib-in(v ⇐ w)
2: if t ≥ stableTime(w) then
3: rib-in(v ⇐ w) =(vw)π(w)
4: else
5: pick some P ∈ {recentRts(w) ∪ ε}
6: rib-in(v ⇐ w) =(vw)P
7: if rib-in(v ⇐ w) 6= old-rib-in then
8: add rib-in(v ⇐ w) to recentRts(v)
9: remove old-rib-in from recentRts(v) at time t+ τ

10: if π(v) 6= best(rib-in, v) then
11: π(v) =best(rib-in, v)
12: stableTime(v) =t+ τ

Fig. 1. The DPVP model for router v responding to the activation of edge
v ⇐ w, i.e. v processing information from w.

v activates when all its adjacent edges (w, v) ∈ E activate
simultaneously. We introduce vertex activations merely for
convenience to allow more compact notation.

DPVP is stable at time t if the path assignment π is stable
and it has not changed in the time interval [t− τ, t]. Note that
if DPVP is stable, it is impossible for nodes to exchange stale
information, and the state cannot change at any later time.

DPVP is safe if any fair activation sequence, from any
starting state, always converges to a stable state. We also define
safety under filtering in the same way as [6], [8] do. DPVP
is safe under filtering if it remains safe under removal of
arbitrary subsets of paths from an arbitrary subset of the Pvs
(this generalizes the removal of arbitrary nodes and edges).

C. A Shorthand Notation

We introduce a shorthand state transition notation that
concisely describes allowed oscillations caused by spurious
updates in the DPVP model. A systematic treatment of the
causes and consequences of spurious updates follows in Sec-
tion IV.

An unsafe example of a network configuration is depicted
in Figure 2. The network contains three nodes which attempt
to obtain a route to node 0. Each node is annotated with its
permitted paths, and these paths are listed in the order of
decreasing preference. For example, node 1 prefers the path
1230 over 10. To demonstrate that the configuration is unsafe,
we must find an oscillation, i.e, an initial path assignment,
an activation sequence that activates every edge, and possible
spurious announcements that cause a cyclical change of the
path assignment. As long as the same activation sequence and
spurious announcements are repeated, the oscillation persists.

The shorthand state transition notation that captures a
possible oscillation in Figure 2 is as follows:

(10, 20, 30)
2,3−−→ (10, 210, 30)

1;(1⇐2:230)−−−−−−−−→ (1230, 210, 30)
2−→ (1230, 20, 30)

1−→ (10, 20, 30).

The initial path assignment is (10, 20, 30), nodes 1, 2, and
3 have paths 10, 20, and 30 respectively. The nodes or
edges activated in each step are listed above the arrow. For

1230
10

210
20
230

30

230

21
30

3

0

Fig. 2. Example of an oscillation in DPVP. Node 2 exports a low ranked
route 230.

example, the path assignment (10, 210, 30) is reached from
the initial state by activating nodes 2 and 3. If a spurious
announcement is made, this is also described above the arrow.
For example,

1;(1⇐2:230)−−−−−−−−→ represents an activation of node 1
where node 1 learns about route 230 from its neighbor 2.
The spurious announcement of route 230 is allowed by the
DPVP model because recentRts(2) contains route 230 and the
path assignment of node 2 keeps changing during the outlined
oscillation.

It is important to realize that not every shorthand notation
that can be written down corresponds to a valid evolution in
the DPVP model. Consider for example the following:

(10, 210, 30)
1,2,3;(1⇐2:230)−−−−−−−−−−→ (1230, 210, 30)

1−→ (10, 210, 30).

This notation is invalid because node 2, which is a stable node
with a fixed path assignment 210, cannot spuriously announce
the low ranked route 230 in DPVP.

IV. EXPRESSIVENESS OF DPVP

Having specified DPVP formally, we need to establish
that it is a realistic model of BGP. We discuss several key
sources of spurious updates in BGP, and demonstrate how
the DPVP model captures them. These sources of spurious
updates include (i) mechanisms that introduce delays to
improve stability and reduce overhead, e.g. route flap damping
and MRAI timers, and (ii) mechanisms that limit route
visibility due to scalability requirements, e.g. specifics of
router implementations. While this list is necessarily non-
exhaustive, DPVP is an abstract model, and hence it is able
to capture other sources of spurious updates as well.

We show specific examples of network configurations where
the sources of spurious updates, such as route flap damping or
router architectures, cause persistent BGP oscillations. These
oscillations are correctly captured by the DPVP model, but
the earlier established models of BGP are usually not able to
model them.

A. Route Flap Damping

The route flap damping mechanism is used to limit the
propagation of unstable routes [10]. When it is enabled, a
BGP router maintains a penalty associated with every prefix
announced by each BGP neighbor. Upon receiving a route
update from a neighbor, the router increases the penalty. If

5

r1

R
r2
r3 r3

BA C

r2→r1 r3

(a) After the update r2 → r1,
the less preferred route r3 is
temporarily selected.

130
10

210
202

0

1

3210

0

30
3210
320
30

3

(b) If node 3 suppresses routes from node
2, it must announce the route 30. This
may cause oscillations.

Fig. 3. The effects of route flap damping.

the penalty exceeds a given suppression threshold, the route is
tagged when it is inserted into the RIB. Tagged routes are not
used in the route selection process, and a route with a different
next hop will be used. The penalties decay exponentially in
time, and if a route doesn’t change, its tag is eventually cleared
and the route may be used. Next, we show how route flap
damping may cause spurious updates, which may in turn lead
to permanent oscillations.

A spurious route announcement occurs when the route
flap damping mechanism temporarily suppresses a route that
would otherwise be preferred. Consider Figure 3(a) where the
router R initially learns routes r2 and r3 from its neighbors
A and B. The router announces route r2 to router C. If the
route r2 is updated to route r1, and the penalty associated
with BGP speaker A exceed the suppression threshold, router
R temporarily suppresses route r1 and selects and exports
route r3. After the penalty decreases, route r1 is selected and
exported. This appears as a spurious announcement to router
C. Route flap damping may also cause a spurious withdrawal.
For example, if router R was only connected to routers A and
C, the same route update would lead to a route withdrawal
from router C. These spurious updates are allowed in the
DPVP model.

A permanent oscillation caused by route flap damping may
occur in Figure 3(b). First, we will convince ourselves that
the configuration is safe in the absence of spurious updates:
node 2 must choose either 210 or 20, and thus node 3 will
choose either 3210 or 320. Therefore node 1 must choose 10
and the stable state is (10, 210, 3210). However, the following
oscillation is possible in DPVP:

(10, 20, 320)
2−→ (10, 210, 320)

3−→ (10, 210, 3210)
1;(1⇐3:30)−−−−−−−→

(130, 210, 3210)
1,2−−→ (10, 20, 3210)

3−→ (10, 20, 320).

Indeed, this oscillation may occur due to route flap damping.
Initially, node 2 activates and changes its route from 20 to 210.
When node 3 activates, it processes the route update from
node 2, which triggers the route flap damping mechanism.
Although node 3 enters the state 3210 in DPVP, in the real
BGP system the route 3210 is suppressed and the route 30
is used instead. This explains why in the next activation the

0

3

130
10

1
30

2130
24130

4130

4

224130
210

2

(a) Node 2 temporarily se-
lects route 24130.

130
1230

2130
210

230

21
32 0

240

1230
10

210
240
230

421043

3240
30

4210
40

4

0

(b) MRAI timer in node 2 may cause per-
manent oscillations.

Fig. 4. The effects of MRAI timers.

spurious announcement 30 is made, and the system enters
state (130, 210, 3210). Assuming that the damping penalty de-
creases, the subsequent activations do not contain any spurious
updates, and the system eventually enters the state it started
in. This example demonstrates that route flap damping may
cause unexpected oscillations that are not predicted by the
earlier models of BGP.

B. MRAI Timer

The MRAI timer [11], [16] may also exhibit unexpected
spurious updates. When a new route is announced to a peer,
subsequent route updates are postponed until the MRAI timer
expires2. The MRAI timer is applied to route announcements
and, depending on the implementation, may [11] or may
not [16] be applied to withdrawals. Some previous models of
routing do not capture the asynchrony caused by MRAI timers.
One such example is a variant of the Simple Path Vector
Protocol (SPVP) with vertex activations [9], [17]. We show
that when MRAI timers are used, an AS may unexpectedly
lose connectivity or select a route which would not be selected
in the SPVP model of routing. This may in turn lead to
unexpected oscillations.

An unexpected spurious announcement caused by the
MRAI timer is illustrated in Figure 4(a). The simplified variant
of the SPVP model with node activations does not allow node
2 to select the route 24130. This can be explained as follows.
Node 2 can only learn route 24130 after node 1 learns route
130, but then node 2 should select route 2130. However, the
behavior of real BGP with MRAI timers differs. Let’s assume
that node 1 learns route 10 and exports it to node 2. Then
it learns route 130, but cannot export it to node 2 because
the corresponding MRAI timer has not expired yet. Then
node 2 may select the route 24130 learned from node 4, but
cannot select route 2130 until the timer in node 1 expires. The
announcement of route 24130 by node 2 is possible in our
DPVP model as a spurious announcement. The SPVP model
with edge activations also allows this announcement.

2The default value is 30 seconds in eBGP and 5 second in iBGP. However,
the values used in practice range between 0 and 30 seconds.

6

A permanent oscillation caused by MRAI timers may
occur in Figure 4(b). This gadget originally appeared in [18]
as Figure 3. They show that this gadget is safe in the SPVP
model with node activations, but it may oscillate in SPVP with
edge activations. We show that the gadget may also oscillate
as a result of node 2 using the MRAI timer. Indeed, our DPVP
model allows the following oscillation:

(1230, 240, 30, 4210)
2−→ (1230, 230, 30, 4210)

3;(3⇐2:240)−−−−−−−−→

(1230, 230, 3240, 4210)
1;(1⇐2:240)−−−−−−−−→ (10, 230, 3240, 4210)

2−→ (10, 210, 3240, 4210)
1,3,4;({1,3,4}⇐2:230)−−−−−−−−−−−−−−→ (1230, 210,

30, 40)
2,4−−→ (1230, 240, 30, 4210).

Initially, node 2 activates and changes its route from 240 to
230. This route change prevents the node from immediately
announcing the new route 230 to its neighbors due to the
MRAI timer. Therefore, when nodes 3 and 1 activate in the
next two rounds, they receive the stale route 240. The MRAI
timer is also invoked during the second to last round of
activations when nodes 1, 3, and 4 receive the stale route 230.
In conclusion, MRAI timers may be responsible for spurious
announcements that cause permanent oscillations.

C. Lack of Route Visibility

Oscillations can be also caused by spurious updates result-
ing from a temporary loss of route visibility. We describe such
losses of visibility due to the increasingly popular cluster-
based router architectures.

Distributed cluster-based routers parallelize functionality
across multiple cores and across multiple server blades within
each router [19], [20]. These architectures are becoming more
common due to the need to scale to larger port densities
and traffic demands at a reasonable cost. A router consists
of multiple control processor blades, each handling a subset
of the BGP sessions. Each blade runs its own software and
exchanges reachability information with other blades. While
the details of this information exchange differ from one
implementation to another, scalability requires each processor
blade to usually only announce the currently used route (the
best route) to the other blades. Due to asynchrony, a blade may
be temporarily unable to see a more preferred route learned
by some other blade. This may lead to spurious updates being
sent.

A spurious route announcement due to loss of visibility
may occur, for example, after the most preferred route is
withdrawn, and the second best route is not visible. Consider
the example in Figure 5(a) which consists of two commu-
nicating processor blades. The cluster-based router prefers
route r1 to r2 which is still more preferred than r3. When
all three routes are available, blade B selects route r1 and
announces it to the other blade A. If route r1 is withdrawn,
blade B must temporarily select route r3 while it waits to
learn about route r2 from the other blade. Therefore, blade B
spuriously announces route r3 to other external BGP speakers.
A spurious withdrawal can be caused if both routes r1 and r3

r1
r2
r3

A B

r2 r1 r3

(a) After route r1 is with-
drawn, blade B temporarily
announces r3.

210
2020 2

A
1 B

130
10

ε

A

0

3210
3203

30

(b) The temporary lack of visibility of
route 20 by processor blade B causes
permanent oscillation.

Fig. 5. The internal architecture of routers (or ASes) is a cause of spurious
updates.

are withdrawn simultaneously. In such a case blade B must
withdraw the route r1 from its external BGP neighbor until it
learns a valid route from the other blade.

A permanent oscillation due to temporary lack of route
visibility may occur in Figure 5(b). First, we observe that if
no router sends spurious updates, the configuration is safe.
This is the same configuration as in Figure 3(b) and hence the
stable state must be (10, 210, 3210). However, the following
oscillation is allowed in DPVP:

(130, 210, 3210)
2−→ (130, 20, 3210)

1,3;(3⇐2:ε)−−−−−−−→ (10, 20,

30)
2−→ (10, 210, 30)

1,3−−→ (130, 210, 3210).

In the second round of activations, node 3 receives a spurious
withdrawal from node 2. This is explained as follows. Initially,
node 2 was in state 210 and blade B used and exported
the route 210. However, after node 1 switched to state 130,
the route 210 was implicitly withdrawn, and blade B was
temporarily left without a route. Before blade B learned about
route 20 from the other blade, it sent a spurious withdrawal to
node 3. Once again, this example demonstrates that spurious
updates may cause unexpected oscillations.

This paper focuses on applying the DPVP model to model
the router-level structure of the Internet. However, DPVP may
also be used to model entire ASes as nodes, if the policies
of routers inside an AS are consistent. This model is much
coarser, and abstracts away many relevant intra-AS details,
but is often reasonable since, from an external viewpoint,
there is often very limited information about intra-AS router
structure. In such a scenario, the internal structure of an
AS may cause spurious updates, as well. The situation is
analogous to the one with cluster based routers, individual
routers correspond to processor blades and the communication
of these routers is facilitated by route reflectors [21]. A
subset of routers is assigned to each route reflector, which
exchanges routing information with these routers and with
other reflectors. Each router only learns one best route from
each of its route reflectors, hence causing similar loss of
visibility as we observed with cluster-based routers. This loss

7

of visibility can be modeled by earlier BGP models, such as
SPVP, if the internal structure of each AS is known, and each
router and route reflector is represented as a separate node; on
the other hand, DPVP allows us to consider questions of safety
while remaining agnostic about the ASes’ internal structures.

D. Router Queues

Unlike the classical SPVP model [4], DPVP does not
explicitly model queues of BGP updates at each edge endpoint.
However, the DPVP model captures any behavior that a queue
could produce. If a node in the SPVP model processes a
particular message from its queue that is older than the most
recent update from the same sender, it may be modeled
in DPVP as a spurious update. If a message is dropped
from the queue, this may be modeled as a DPVP spurious
withdrawal. On the other hand, DPVP intentionally allows a
more varied behavior than per-edge queues do. While features
like route flap damping may be modeled by particular patterns
of dropped messages in a queue, some patterns of spurious
updates valid in DPVP will not correspond to any possible
queue behavior. It is worth noting that an edge in DPVP
does not necessarily model a single BGP session, but rather
models all BGP messages that may be exchanged between two
potentially large, complex, distributed modern routers, which
may share multiple physical links for redundancy, or might
even have several BGP sessions. Since much is unknown in
the public domain about the details of bleeding-edge intra-
router architectures that vendors use today or may use in
the near future, we intentionally limit our assumptions about
exactly how two DPVP nodes will interact. We only assume
the bare minimum restriction that we expect all routers to
obey: the router acts on some reasonable timescale consistently
like a monolithic BGP speaker, independently of its internal
complexities.

Of course, if a DPVP instance is used to model AS-level
behavior, there are many more possible sources of spurious
updates from inter-router interaction. Those spurious events
would not be well represented at all by any model involving
a queue assigned to a node representing a whole AS.

V. ALL SPURIOUS UPDATES CAN BE REALIZED

We demonstrate that any spurious behavior that is allowed
in the DPVP model can be realized in the real interdomain
routing system. Since we focus on the most general cases,
our examples necessarily rely on complex configurations. We
note, however, that the examples in Section IV show that many
spurious updates in the DPVP model are caused by much
simpler configurations.

In general, we need to show that when the most preferred
path available to a router changes from r1 to r2, the router
may spuriously announce an arbitrary sequence of route up-
dates r3, r4, r5, ... to some neighbors before making the final
announcement r2. For full generality, we need to separately
consider the two possible causes of the change of the most
preferred route from r1 to r2. In the first, an update with
route r2 implicitly withdraws route r1. In the second, route r2

r1 > {r3, r4, r5, …}
r2 > {r3, r4, r5, …}

A B C D

r3

r3
r4

r4
r5

r5
r3 r4 r5

Fig. 6. If blade A damps route r2 after the update r1 → r2, blades B, C
and D announce routes r3, r4, and r5 after they learn about the loss of route
r1.

r2 > r1 > {r3, r4, r5, …}

A B C D

r3

r3
r4

r4
r5

r5r1 r3 r4 r5

Fig. 7. Route r2 becomes available (numbers in parentheses are MEDs). If
a small asynchrony causes damping in blades B, C, and D only, then these
blades announce routes r3, r4, and r5 respectively.

becomes available in addition to route r1. We analyze the two
cases separately.

The first case is illustrated in Figure 6 that depicts a cluster-
based router consisting of four processor blades. The blade A
receives an update with route r2, which implicitly withdraws
route r1. Let us assume that this update triggers the route
flap damping mechanism [10], and route r2 is temporarily
suppressed. Therefore, the router blade A announces to the
other blades that no route is available to it. This informa-
tion first reaches blade B, which identifies route r3 as the
currently best route that is available to it, and announces it
to its external BGP neighbors. Similarly, blades C and D
spuriously announce routes r4 and r5 after they hear from
blade A. Assuming that the route flap damping ceases, and
the internal state of the cluster-based router becomes consistent
before further announcements are made, the final route r2 is
announced next. We conclude our analysis by noting that some
of the routes r3, r4, r5, ... can be the empty routes ε, and hence
spurious withdrawals can be made.

Figure 7 illustrates the remaining case where a new route
r2 becomes available in addition to a less preferred route r1
which remains available as well. This example relies on the
use of the Multi Exit Discriminator (MED). If one or more
routers in an AS learn multiple routes from the same BGP
speaker, these routes may be tagged with MED values. Routes
tagged with smaller MED values are strictly preferred over
routes with higher MED values. In our example in Figure 7,

8

route r2 has its MED values shown in parentheses. Route r2
is announced to multiple blades on multiple interfaces perhaps
because multiple parallel links connect the cluster-based router
to the next hop on route r2. This is a common occurrence in
practice because high speed connections often consist of many
parallel lower speed links. The link serviced by blade A has a
higher MED value than the other ones, perhaps because it is
a backup link, or because the network operator decided that
the link needs to be taken down for maintenance in the near
future, and traffic needs to be diverted.

The following dynamics in the system in Figure 7 leads to
the desired spurious behavior. Initially, route r1 is announced
to the outside by each blade. Because each blade is running
its own copy of the routing software, the blades must in-
dependently decide if an externally learned route should be
damped. The timing of message processing may cause a slight
asynchrony where one blade allows a route, whereas it is
damped by another blade. Here we will assume that blades
B, C, and D damp the newly learned route r2 while blade A
allows it. Therefore, blades B, C, and D will learn that blade
A would like to use route r2 (which should not be used due to
its MED), and therefore they will export the spurious routes
r3, r4, and r5 similarly as in the previous example. After the
internal state of the cluster-based router becomes consistent,
the final route r2 is announced.

VI. IMPACT ON CONVERGENCE

After having established that spurious updates may cause
permanent oscillations in configurations that are otherwise
stable, it is natural to ask if any existing results concerning
convergence of BGP change with the introduction of spuri-
ous updates. We show in Section VI-A that an exponential
slowdown in convergence time may occur. Furthermore, in
Section VI-B we show an example of safety conditions in the
literature that ensure safety in the absence of spurious updates,
but that no longer hold in their presence.

A. Slower than Expected Convergence

Understanding and improving the convergence time [17],
[22] has been a central question in the BGP literature. It has
been established that while the lower bound on convergence
is in general exponential [23], a more favorable bound can
be obtained in a Gao-Rexford [2] model of routing. In the
Gao-Rexford model, every pair of neighboring ASes has a
customer-provider relationship or a peering relationship, and
no AS can become an indirect provider of itself. Furthermore,
every AS prefers customer routes over peer or provider routes.

A recent paper of Sami et al. [3] shows that in the Gao-
Rexford setting, the convergence time of BGP is linear in the
depth of the customer-provider hierarchy, or more precisely it
is at most 2l + 2 phases where l is the length of the longest
directed customer-provider chain in the AS graph. We define
the term phase below. We show an example of a network that,
when spurious messages are allowed, the convergence takes
(2k+1)l−2 phases where k is the number of spurious messages
that a node is allowed to announce after each route change.

210

10

210
20

320
302

1 3

0 430
404

540
50l‐1

5

(a)

210

10

210
20

2

1

0

(b)

Fig. 8. Slowly converging network configurations.

Our example, which is based on a topology that appears in the
original work of Sami et al. [3], shows that spurious updates
may cause an exponential slowdown of convergence even in
the Gao-Rexford setting.

In their work a phase is defined as a period of time in
which all nodes get at least one update message from each
neighboring node, and all nodes are activated at least once after
receiving updates from their neighbors. When a node activates,
it processes the messages it previously received from all of its
neighbors. The example which we describe next demonstrates
that because the model of Sami et al. does not capture spurious
route updates, it may lead to overly optimistic conclusions.

Figure 8(a) depicts a network with l nodes. Node 1 prefers
route 10, and every other node i prefers route i(i− 1)0 over
the direct route i0. This set of path preferences is compatible
with the Gao-Rexford constraints if node 0 is a customer of
every other node and node i−1 is a customer of node i for 2 ≤
i ≤ l−1. The length of the longest directed customer-provider
chain 0, 1, 2, ..., l−1 is l. The arrows in the figure describe the
initial routing choice of each node. Node 1 chooses the empty
route, the even numbered nodes route directly to the origin 0,
and all odd numbered nodes except node 1 route through the
counter-clockwise neighbor. With the exception of node 1 this
state is stable.

To show that the convergence in Figure 8(a) may take at
least (2k+1)l−2 phases in a model where each node is allowed
to make at most k spurious updates after each route change,
we first analyze the convergence of the smaller topology in
Figure 8(b). The smaller topology is a special case of the
larger one with l = 3, and we will show convergence in
(2k + 2) phases. In each phase, each node must activate at
least once. Spurious updates are only used when we explicitly
mention them. The initial state is (ε, 20). We assume that the
two nodes activate simultaneously. After the first phase the
state is (10, 20), and after the second phase (10, 210). In the
third phase node 1 spuriously withdraws the route from node
2. The system reaches state (10, 20) after the third phase, and
state (10, 210) after the fourth. This sequence is repeated, node
1 sends spurious updates in every odd phase for a total of k
spurious updates, and the state flips back and forth between

9

(10, 20) and (10, 210). The kth spurious update is made in
phase 2k + 1 and the final state is reached in phase 2k + 2.
Note that the route of node 1 changed once from ε to 10, but
the route of node 2 changed 2k + 1 times.

A slow convergence in Figure 8(a) is achieved with the
following timing of spurious updates. When the route of node
i where 1 ≤ i ≤ l − 1 changes, this node makes a spurious
announcement of the previously chosen route after each of
the nodes with a higher node number sent k spurious updates
and these nodes reached a stable state. Using the fact that
in Figure 8(b) the state of node 2 changes 2k + 1 times, we
conclude that whenever the route chosen by node i changes,
the route chosen by node i+1 changes 2k+1 times. Therefore,
the route chosen by node l− 1 will change (2k+ 1)l−2 times
and the number of phases required for convergence is (2k +
1)l−2.

B. BGP Without a Reel Unsafe

Although BGP convergence without spurious updates has
been studied extensively, prior work either concerns sufficient
or necessary conditions for safety. A classical result shows that
the absence of a structure called a dispute wheel3 is sufficient
for safety [4]. Safety is also guaranteed when routing policies
satisfy the conditions of Gao and Rexford [2].

The strongest result concerning BGP safety prior to the
publication of our work has been obtained by Cittadini et
al. [6]. They provide the necessary and sufficient conditions
for safety with route filtering. Filtering allows each node to
remove an arbitrary subset of paths from the list of permitted
paths. They prove that instances that do not contain a dispute
reel3 are safe under any filtering, and if an instance contains a
dispute reel, then there exists a filtering that allows oscillations.
Note that these conditions become sufficient conditions for
safety in the general setting without filtering. The result of
Cittadini et al. no longer holds if we allow spurious updates.

Consider the example in Figure 9. This is the same topology
that appears as Figure 4 in the original work of Cittadini [6] as
an example of a safe topology without a reel (the dispute wheel
with pivot vertices 1, 2, and 3 is not a reel because each pivot
vertex appears in three rim paths, violating Definition VII.2).
However, the following oscillation may occur:

(10, 20, 30)
1,2,3;(2⇐1:130),(3⇐2:210),(1⇐3:320)−−−−−−−−−−−−−−−−−−−−−−−−→ (1320, 2130,

3210)
1,2,3−−−→ (10, 20, 30).

This is a valid oscillation in the DPVP model where the
spurious announcements may be caused, e.g., by the details
of cluster-based hardware implementation of routers 1, 2, and
3. To make a spurious announcement, router 1 needs to have
one router blade responsible for the BGP session with router 0,
and another blade responsible for the other two BGP sessions.
Routers 2 and 3 could use similar hardware architecture.

3Dispute wheel and dispute reel are formally specified in Definitions VII.1
and VII.2.

1320
10

3210
320

3110
130

30
320

130

3

0

1

2130

210

2 2130
20
210

2

Fig. 9. The graph does not contain a reel. However, spurious updates may
cause oscillations.

VII. BGP SAFETY WITH SPURIOUS UPDATES

The unexpected oscillations due to spurious updates beg the
question of whether previous results on BGP safety continue
to hold under the DPVP model. Fortunately, in Section VII-A
we are able to extend the well-studied No-Dispute-Wheel
condition [4], sufficient for BGP safety in the SPVP model,
to show that it still applies with spurious updates. This result
implies that the class of systems that oscillate due to spurious
updates is relatively small, and most importantly, earlier results
that use the absence of dispute wheel as a condition of
safety hold even in the presence of spurious updates. While
Section VI-B showed that the absence of dispute reels is
not sufficient for safety under filtering with spurious updates,
Section VII-B introduces a modified structure, a two-third reel,
which we show to be necessary and sufficient.

A. No Dispute Wheel Implies Safety

The classical result by Griffin et al. [4] shows that BGP is
safe in the SPVP model in the absence of dispute wheels like
the one in Figure 10, formally defined as follows:

Definition VII.1. [4] A dispute wheel W = (U,Q,R) of size
k is a set of nodes U = {u0, u1, ..., uk−1} and sets of paths
Q = {Q0, Q1, ..., Qk−1} and R = {R0, R1, ..., Rk−1} such
that the following conditions hold. For each 0 ≤ i ≤ k − 1,
when all subscripts are interpreted modulo k:

(i) Qi is a path from ui to the origin.
(ii) Ri is a path from ui to ui+1.

(iii) Qi ∈ Pui and RiQi+1 ∈ Pui .
(iv) λui(Qi) ≤ λui(RiQi+1).

We strengthen Griffin et al.’s result to show that even with
spurious updates, modeled by DPVP, BGP is still safe if
there is no dispute wheel. This automatically strengthens the

Qk‐1

Q0

Q1

Qi+1 Qi

Rk‐1 R0

Ri

u1

0

u0

uiui+1

uk‐1

Fig. 10. A dispute wheel of size k.

10

applicability of the large body of BGP literature that relies on
the original No-Dispute-Wheel result under SPVP. We show:

Theorem VII.1. DPVP instance with no dispute wheel is safe.

We note that although the absence of a dispute wheel is
sufficient for safety, it is not necessary in both DPVP and
SPVP. That is, dispute wheels can occur in safe instances of
the routing problem.

Rather than prove Theorem VII.1 separately, we actually
derive it as a corollary of the stronger result in Section VII-B.

B. Safety with Filtering

Safety under filtering [8] studies convergence where an
arbitrary subset of routes may be removed from the set of
permitted paths Pv . In [6] it was shown that the necessary and
sufficient condition for safety under filtering in the classical
SPVP model is the absence of a particular type of dispute
wheel called a dispute reel:

Definition VII.2. [6] A dispute reel is a dispute wheel which
satisfies the following conditions:

(i) Pivot vertices appear in exactly three paths: for each
ui ∈ U , ui only appears in paths Qi, Ri and Ri−1.

(ii) Spoke and rim paths do not intersect: for each u 6∈ U ,
if u ∈ Qi for some i, then no j exists such that u ∈ Rj .

(iii) Spoke paths form a tree: for each distinct
Qi, Qj ∈ Q, if v ∈ Qi ∩Qj , then Qi[v] = Qj [v].

Section VI-B showed that this result does not hold when we
account for spurious updates. We define a generalized version
of the dispute reel structure, which we prove to be exactly
what is needed to identify the systems that are unsafe, but
only due to spurious updates. That is, we prove:

Theorem VII.2. BGP, as modeled by DPVP, is safe under
filtering if and only if the network has no “two-third reel”:

Definition VII.3. A two-third reel is a dispute wheel which
satisfies the second and third condition of dispute reel:

(i) Spoke and rim paths do not intersect: for each u 6∈ U ,
if u ∈ Qi for some i, then no j exists such that u ∈ Rj .

(ii) Spoke paths form a tree: for each distinct
Qi, Qj ∈ Q, if v ∈ Qi ∩Qj , then Qi[v] = Qj [v].

The intuition for removing the first condition in the dispute
reel definition is that spurious behavior of DPVP effectively
allows us to “mangle” the rim of the reel, with pivots appearing
in multiple rim paths. This would prevent divergence in SPVP,
since a pivot would have to stick to one of its options in
between its activations, preventing its participation in other
pivots’ rim paths. However, with spurious announcements, the
“multi-tasking” pivot’s internal structure may allow it to keep
spuriously announcing some of its other available routes in
such a pattern as to keep the oscillation going.

PROOF OF THEOREM VII.2: The theorem combines the two
implication directions treated separately by Lemma VII.1 and
Lemma VII.2. �

Lemma VII.1. If a DPVP instance S is unsafe under filtering,
it has a two-third reel.

Lemma VII.2. If a DPVP instance S contains a two-third
reel, it is not safe under filtering.

We should first formalize the concept of a DPVP evaluation
cycle, which, given that the system is finite, will arise in any
unsafe instance. An evaluation cycle C = (Π,M, σ) consists

of a path assignment cycle Π = π1
σ1(M1)−−−−−→ π2

σ2(M2)−−−−−→
...

σk(Mk)−−−−−→ πk+1, with π1 = πk+1, with a matching edge
activation sequence σ and spurious message sequence M . A
cycle is well-formed if all the paths can evolve as specified
given the message sequence, and the message sequence can
continue to be sent indefinitely. That is, no spurious announce-
ments depend on any events that predate the cycle; and every
node sending messages changes its chosen path at least once
in the cycle, allowing it to keep sending spurious updates, as
long as the cycle loops within τ time.

Let the set values(C, u) be the paths that node u adopts at
some point in C. Let F be the set of fixed nodes: those that
have a fixed path assignment throughout C; and let G be the
other, oscillating, nodes. We will need this technical lemma:

Lemma VII.3. Suppose P ∈ Pv is adopted by node v ∈ G
in the cycle C. Then we can write P = QR where the first
node on path R is in G and all other nodes further on in R
are in F .

Proof: v ∈ G, and the destination 0 is in F .
PROOF OF LEMMA VII.1: We use proof techniques similar

to the ones in the SPVP safety proof [4] to show that an unsafe
instance has a two-thirds reel.

Let C = (Π,M, σ) be a well-formed non-trivial cycle. Let
U ⊆ G be the nodes that sometimes adopt a path that consists
of fixed nodes. U is nonempty, since there are oscillating
nodes, and applying Lemma VII.3 to one of them gives a
node in U .

We now construct a dispute wheel. Let u0 be a node in U .
Let Q0 = (u0, w0)Q′0 be the path of u0 such that w0 ∈ F .
Since any such w0 doesn’t send spurious updates in the cycle,
one can verify that there is only one such Q0, and it is the
lowest ranked path in values(C, u0). Let H0 ∈ values(C, u0)
be the highest-rank path u0 ever adopts. We have λu0(H0) >
λu0(Q0). Lemma VII.3 lets us decompose H0 = R0Q1, with
Q1 = (u1, w1)Q′1, u1 ∈ U , and R0 being non-empty since Q0

is unique at u0. We repeat this inductively to yield a sequence
(ui), which loops back to u0 since U is finite. The nodes ui,
spokes Qi and rims Ri form the dispute wheel.

Finally, we prove that the dispute wheel also satisfies the
two-third reel conditions of Definition VII.3. Suppose that con-
dition (i) is not satisfied and there exists a node u ∈ Qi ∩Rj .
Since u ∈ Qi, u and the rest of Qi[u] lie in F . Fixed nodes
can’t send spurious updates, so any repeating announcement of
a path via u will end with Q[u] (by induction back from u to
the sender of the announcement). Thus, Rj [u] must be a prefix
of Qi[u], requiring Rj [u] ⊆ F , but this contradicts Rj [u]

11

u
Rk‐1 R0u0

u1uk‐1

Q

Q0

0

Qk‐1 Q1

0

Qi+1 Qi

u

Ri

ui+1 ui

(a) All-spoke path assignment π̄.

u
Rk‐1 R0u0

u1uk‐1

Q

Q0

0

Qk‐1 Q1

0

Qi+1

Qi

u

Ri

ui+1 ui

(b) One-rim path assignment π̄i.

Fig. 11. Special path assignments of a two-third reel.

ending in uj+1 6∈ F . Suppose condition (ii) is violated, and
there exist spoke paths Qi, Qj ∈ Q and a node v ∈ Qi ∩Qj
such that Qi[v] 6= Qj [v]. Then v cannot be a stable node, a
contradiction.

Any instance that is unsafe under filtering will thus have
a two thirds reel after some routes are filtered. But if that
subinstance has a two thirds reel, “unfiltering” those routes
can’t remove the reel, guaranteeing a two thirds reel in the
original instance as well. �

PROOF OF LEMMA VII.2: Given a two-thirds reel, we first
find the right parts of the system to filter out to cause the
oscillation. We then define the path assignments that comprise
the oscillation, and finally we show the activation sequence
that allows infinite transitions between these path assignments.

Given an SPP instance S containing a dispute wheel W ,
the supporting instance S[W] is the minimal instance which
contains the vertices, edges and paths of W . That is, the
supporting instance is obtained by filtering all paths except
the spoke and rim paths in the dispute wheel, and removing
all edges and vertices outside of the dispute wheel.

The system oscillates by alternating between “all-spoke”
and “one-rim” path assignments, like those in Figure 11.
Formally, an all-spoke path assignment is a path assignment
π̄ such that π̄(u) = Qi[u] if u ∈ Qi, and π̄(u) = ε otherwise.
A one-rim path assignment is a path assignment π̄i such that:

π̄i(u) =

 Qj [u] if u ∈ Qj , u 6= ui
Ri[u]Qi+1 if u ∈ Ri
ε otherwise.

Let S be the routing problem instance containing the two-
third reel R = (U,Q,R) of size k. We consider the supporting
instance S[R] and construct a fair activation sequence with a
sequence of possibly spurious messages that cause oscillations.
The main idea is to alternate between the all-path assignment
π̄, and one-rim path assignment π̄i. Once a one-rim path
assignment π̄i is reached, the all-paths assignment is reached
next, followed by the one-path assignment π̄i+1. This infinite
sequence repeats itself, with the index i+1 calculated modulo
k. The paths of the nodes on the rim changes, and hence these
nodes may send spurious updates.

The proof is illustrated in Figure 12. The black nodes are

u u02

R3

Q

R0

u3 u0

1. 1.
2. 2.

3.
Q0Q3

Q1
Q2

1. 1.

2. 2.
R

u1
R2

3.
3.u2

Fig. 12. Sequence of activations that results in permanent oscillations.

nodes that have a fixed path throughout the evaluation cycle.
The paths of the white nodes change and we assume that the
convergence time τ is long enough to allow these nodes to
make spurious updates. Note that we design the oscillation
with the property that every rim node oscillates; the system
may also have other oscillations without this property.

We start with the empty state, π(v) = ε for all v. First, we
activate the edges of each spoke path Qi in outbound order
from 0. Any non-pivot spoke node is not on the rim, and
the pivots are all on separate spokes, so the filtering causes
the spokes to build up the all-spoke path assignment π̄. In
the remainder, we will assume that, unless stated otherwise,
each node u ∈ Rj for each j always sends a spurious
withdrawal (ε) to every neighbor. All other nodes make non-
spurious announcements. Next we activate the edges on path
R0 = (x0 = u0, x1, . . . , xl = u1) in reverse order, i.e.,
starting from node u1. The node xi spuriously announces route
R0[xi]Q1 to node xi−1. Therefore, the path assignment π̄0 is
reached. If all edges of each rim node are activated making
the spurious withdrawal as specified before, the all-spoke path
assignment is reached again. Continuing inductively, we reach
assignment π̄1, and so on, yielding the infinite activation
sequence. �

PROOF OF THEOREM VII.1 is now a direct corollary of
Theorem VII.2. If there is no dispute wheel, there is no two-
thirds reel, a special type of dispute wheel, and the resulting
safety under filtering implies safety. �

As should be evident from the ease with which we prove the
sufficient conditions for safety in the DPVP model, spurious
updates give us extra flexibility when finding oscillations,
which makes proofs significantly easier. In the remainder of
the paper we solve the long-standing open problem of finding
the necessary and sufficient conditions for safety.

VIII. THE NECESSARY AND SUFFICIENT CONDITIONS

We now formulate a sufficient and necessary condition for
safety in the DPVP model. We show that a system is safe
if and only if the configuration allows the existence of a
particular combinatorial structure in the network. Since such a

12

structure can serve as an easy-to-check proof of the system’s
DPVP safety, the problem of deciding DPVP safety is in
NP, which contrasts the intractability results that show SPVP
safety checking is PSPACE-complete [15]. Most remarkably,
our results in Section IX show that we can check a DPVP
system for safety in polynomial time in most practical settings.

Informally, the network will be unsafe if and only if it
admits a mapping of each node to a “selected path” and a
partition of the nodes into two non-empty sets:

1) Stable nodes that select paths which (i) use only other
stable nodes, (ii) comprise a consistent routing tree to the
destination when taken together, and (iii) are the most
preferred such paths for their respective nodes, and

2) Coy nodes that are “coy” about joining that stable tree:
they select a path that starts with another coy node as a
next hop, preferring it over any paths that go straight to
the stable tree.

We will shortly formally define this structure, which we dub a
CoyOTE (for “Coy Optimum at Tree Edges”). We will show
that the stable nodes are guaranteed to reach a stable state
under any activation sequence, while the coy nodes are capable
of triggering DPVP oscillations.

Theorem VIII.1. An instance of DPVP oscillates if and only
if it has a CoyOTE.

To formally define the CoyOTE structure, we’ll need some
intermediate technical definitions:

We use C ⊂ V to denote the set of coy nodes, and always
define S = V \ C to denote the complementary set of stable
nodes. Given a path assignment Π and a coy set C, we define
the set stableChoices(v, C,Π) of all paths available to v that
go directly to the stable set: all P ∈ Pv such that P = (v, u)P ′

where u ∈ S and P ′ = πu. If the set stableChoices(v, C,Π)
is nonempty, let bestStable(v, C,Π) be the best such path:
the unique P ∈ stableChoices(v, C,Π) for which λv(P) is
maximal. Otherwise let bestStable(v, C,Π) be ε.

Definition VIII.1. The pair (Π, C) of a path assignment Π and
a coy set C ⊂ V (with the stable set defined as S = V \ C)
is a CoyOTE if the following conditions hold:

(i) Stable origin: The origin is stable, 0 ∈ S.
(ii) Coy existence: There are coy nodes, C 6= ∅.

(iii) Best stable path at stable node: A stable node se-
lects its best stable path — for all v ∈ S, πv =
bestStable(v, C,Π).

(iv) Coy node prefers a coy path: a coy node selects a path
learned from a coy node — for all v ∈ C we have πv =
(v, vnext, . . . , 0) with vnext ∈ C. The selected route must
be higher ranked than v’s most preferred stable route,
λv(πv) > λv(bestStable(v, C,Π)).

(v) Consistency with stable suffixes: Every node’s selected
path is “suffix-consistent” with (S,Π), as defined below.

Definition VIII.2. A path πv is suffix-consistent with (S,Π)
if every suffix of πv that starts with a node s ∈ S is consistent
with πs: if πv = (v, . . . , s, Ps, 0) and s ∈ S (Ps is an arbitrary
subpath), then πs = (s, Ps, 0).

We will need the following easy corollary of the definition:

Lemma VIII.1. In a CoyOTE:
(i) If v is stable (and πv 6= ε), then πv = (v, PSv , 0), where

PSv is a possibly-ε subpath containing only stable nodes.
(ii) If v is coy, then πv = (v, PCv , P

S
v , 0), where PCv is a non-

empty subpath consisting of only coy nodes, and PSv is a
possibly-empty subpath consisting of only stable nodes.

Proof: By induction on the length of paths assigned by
Π. Assuming a node chooses a path where a coy node occurs
after a stable node, by condition v there is a suffix (s, c, . . . , 0)
with s ∈ S, c ∈ C, but then πs violates condition iii. With
condition iv, the rest follows inductively.

We now tackle the two directions of Theorem VIII.1 sepa-
rately: Lemma VIII.2 and Lemma VIII.4 establish that a Coy-
OTE is sufficient and necessary, respectively, for oscillations
in DPVP.

Lemma VIII.2. If a DPVP instance has a CoyOTE, then the
DPVP instance can oscillate.

Proof: Given a CoyOTE (C,Π), it suffices to find an
infinite fair activation sequence in which the state of the system
continues changing.

Consider starting with an empty path assigned to each node
(e.g., as if the destination just went online). The activation
sequence starts by every stable node v ∈ S with πv 6= ε
activating in the order of breadth-first search on the stable node
tree, from the destination outward, so that each such node gets
its path in πv immediately, and never changes again.

After that, all the coy nodes v ∈ C activate in a loop so that
each one chooses the path πv at some point. Pick some order
of coy nodes, c1...k. For each ci in order, we run 2 rounds of
activations. In round 1, activate all the coy nodes on the coy
prefix of the path πci (nodes PCci in Lemma VIII.1), starting
with the node at the edge of the stable tree and moving toward
ci, and have them announce, perhaps spuriously, their suffix
of πci . By ci’s turn, πci will be available, so it or another
coy-next-hop path will get selected. Round 2 activates all the
same nodes in the same order, and have them send spurious
withdrawals. With no coy-next-hop paths available after that,
ci will change its path selection. Repeat this sequence for all
the cis in a loop. Each coy node will keep changing its route,
allowing it to keep sending spurious updates.

By condition iii, any stable node v with πv = ε cannot have
any paths in Pv available from its stable neighbors. Thus, it
may only receive announcements of allowed paths from coy
nodes. By having these remaining stable nodes activate after
the second round of each ci step above, they will never have
any allowed paths available to them.

For the other direction, we need another technical lemma:

Lemma VIII.3. Let an oscillating node c ∈ V in an instance
of DPVP select path P at some point during the oscillation.
If the path P contains node s ∈ V and the node s does not
oscillate, then node s must permanently select path P [s, 0].

Proof: Oscillating nodes only announce recently available

13

paths. Since s will not be announcing spurious updates for
longer than τ after it stops oscillating, any stale path containing
node s and a suffix other than P [s, 0] will not be announced
anywhere for longer than iτ time after s converges and enough
fair activation phases pass.

Lemma VIII.4. If a DPVP instance oscillates, it has a
CoyOTE.

Proof: Given the oscillating instance I and the corre-
sponding activation sequence, we construct a CoyOTE (C,Π).

Let SI be the non-oscillating nodes and CI the oscillating
nodes in the instance I . Any non-oscillating node v ∈ SI
which permanently chooses path (v, u)P learned from an
oscillating node u ∈ CI can be made to oscillate by changing
the activation sequence. Add an activation of the edge (u, v)
with a spurious withdrawal, and a second activation of the
edge with a (possibly spurious) announcement of path P . We
keep adding nodes to CI until no more nodes can be made to
oscillate. We can set Π so that (CI ,Π) is a CoyOTE. For non-
oscillating nodes v ∈ SI , we set πv to be the path permanently
chosen. For oscillating nodes v ∈ CI , we set πv be the highest
ranked of the path(s) that v chooses in the oscillation.

(CI ,Π) can be seen to be a CoyOTE: The origin is stable
and CI is non-empty, yielding conditions i and ii. After the
above iteration, every node s remaining in SI has a path πs

that is either ε or was learned from another node in SI . Any
path from s to a next hop also in SI is continually available,
so s chooses the stable path bestStable(s, C,Π) which must
be available, yielding condition iii. If, for v ∈ CI , the highest
ranked path chosen infinitely often in the oscillation has a
stable next hop, then, after the next hop stabilizes and τ time
passes, that path must indeed become permanently available,
which contradicts v continuing to oscillate, yielding condition
iv. Lastly, Lemma VIII.3 covers condition v.

IX. PRACTICAL ALGORITHM FOR SAFETY VERIFICATION

We now consider the algorithmic question of checking
safety under DPVP. We give an algorithm, “DeCoy”, that
greedily shrinks the candidate coy set, and reaches an empty
coy set if and only if there is no CoyOTE. This algorithm is
always correct, but its runtime depends on the local policies of
the nodes. After analyzing the algorithm in general, we explore
the large class of policies which enable it to run efficiently,
which turns out to cover most BGP policies used in practice.

A. The “DeCoy” safety verification algorithm

The DeCoy algorithm in Figure 13 greedily builds up the
candidate stable set, starting with just the destination4:

Theorem IX.1. A DPVP instance is safe if and only if DeCoy
terminates with all nodes in the stable set S.

Proof: DeCoy terminates with S = V ⇒ safety:
We only need to show that if DeCoy adds vertex v ∈ V to

the stable set S and assigns it path πv , then for any infinite

4And possibly some nodes that are permanently disconnected from the
destination, which are stable and retain the empty route.

initialize S = {0}∪{nodes not connected to 0}; C = V \S
while there exists a v ∈ C such that:

1) v has a neighbor in S, and
2) there is no path P ∈ Pv which is both:

a) preferred by v over bestStable(v, C,Π), and
b) suffix-consistent with (S,Π)

do
move v from C to S; set πv = bestStable(v, C,Π)
for any v ∈ C with no paths in Pv that are suffix-
consistent with (S,Π) do

move v from C to S; leave πv = ε
if C is empty then return “safe”
else return “unsafe: (C,Π) is a CoyOTE”

Fig. 13. The DeCoy algorithm.

fair activation sequence in DPVP, node v must permanently
choose path πv . We do so by induction. The claim is true for
nodes added to the stable set at beginning, since these nodes
in the DPVP model always permanently select the empty path
ε. Next, let’s assume that the claim holds for all nodes in set
S after a particular pass through the while loop.

Consider node v that is added to S and assigned path πv =
bestStable(v, C,Π) on the next iteration of the while loop,
outside the for loop. By contradiction, assume that there exists
some infinite fair activation sequence where for any step in the
sequence t there exists step T > t in which node v chooses
path P 6= πv . The case of λv(P) > λv(πv) is precluded
by the conditions 2(a-b) of the while loop, since, from the
induction over the while loop, all nodes already in S will
stabilize, and thus any announcements using paths not suffix-
consistent with (S,Π) will disappear from the system within
nτ time after that. We also cannot have λv(P) < λv(πv):
since πv will always be available to v after τ time after the
next hop stabilizes, a less preferred path cannot be chosen
after that. Lastly, since the next hop of πv , more than τ time
after stabilization, won’t announce any other paths, P must
have a different next hop, which precludes the possibility of
λv(P) = λv(πv), by the strictness constraint of SPP.

Similarly, the claim holds for any node v assigned to S with
an empty πv in the for loop. We know that nτ time after S
stabilizes, no paths in Pv will be announced anywhere, and
thus v will be forced to remain without a route after that.
DeCoy terminates with non-empty C ⇒ a CoyOTE exists:

Observe that after DeCoy finishes, the πv for every node
v ∈ C is left unspecified. We complete the specification of
the path assignment Π by setting πv for every v ∈ C to
the highest ranked path in Pv that is suffix-consistent with
(S,Π). This must be a non-empty path, ranked strictly higher
than bestStable(v, C,Π). Otherwise, if bestStable(v, C,Π) is
non-empty and there is no such path, v would satisfy the
while loop’s condition and would be added to the stable set.
Alternatively, if the resulting πv is ε — or, equivalently, if
bestStable(v, C,Π) is empty and there is no allowed suffix-
consistent path higher-ranked than ε — then there is no
allowed suffix-consistent path at all. In that case, v would

14

have been stabilized inside the for loop after its last allowed
path stopped being suffix-consistent. This insures CoyOTE
condition (iv).

CoyOTE conditions (i), (ii), (v) are immediate from the
construction if C 6= ∅.

Note that throughout the algorithm, the set S grows, and
path assignments are never changed after being set for the
first time. As more nodes are stabilized and the number
of constraints required for suffix-consistency increases, the
set of candidate paths that are suffix-consistent with (S,Π)
monotonically shrinks.

For a stable node s with a non-empty path, consider the
stable next hop s′ of the path bestStable(s, C,Π), using the
final values of C, S, and Π. Suppose s′ was added to the stable
set after s, so it would have been still in C when s was being
added. Since πs

′
was suffix-consistent when it was assigned to

s′, by monotonicity, it was suffix-consistent earlier, too. But,
since that path became bestStable(s, C,Π) by the end of the
algorithm, it must have ranked higher than whatever path s was
assigned as its current bestStable(s, C,Π), using the running
value of C and Π when s was stabilized (when s′ wasn’t stable
yet). Thus, s′’s path would have negated condition (2) of the
while loop, preventing s from being stabilized. Thus, s′ was
stabilized before s, and, by the time s was stabilized, we had
bestStable(s, C,Π) = (s, πs

′
), confirming CoyOTE condition

(iii).
For a stable node s with an empty path, by the mono-

tonic shrinking of the set of suffix-consistent paths, if there
were no allowed suffix-consistent paths when πs was as-
signed ε, none would have appeared since, guaranteeing that
bestStable(s, C,Π) would be ε at termination, too, and con-
firming condition (iii) here, too.

The efficiency of the DeCoy algorithm turns out to be
intricately linked to the tractability of optimizing over policies,
including both router preferences (embodying, e.g., BGP local
preference settings), and allowed path sets (embodying, e.g.,
filtering rules). We first define the fully general requirements
on optimizable policies that allow DeCoy to run efficiently,
and then, in Section IX-B, discuss the wide range of realistic
policies that fit into this framework.

Definition IX.1. We say that a node v implements optimizable
policy if v’s permitted path set Pv and ranking function λv

allow a polynomial time algorithm which, given a suffix-
consistent stable tree (S,Π), can find the highest-ranked suffix-
consistent path P ∈ Pv .

Theorem IX.2. If all nodes implement optimizable policy,
DeCoy runs in polynomial time.

Proof: We can search through the O(n) paths in
stableChoices(v, C,Π) by brute force, to find the bestStable
path. The optimizable policy constraint then lets us check
whether the most preferred suffix-consistent allowed path is
stable — which is needed to evaluate the second condition of
the while loop. The for loop condition is checked by seeing
if the optimization returns the empty path as the best suffix-

consistent allowed path. The other steps are always efficient.
Nodes are stabilized at most once, so there are a total of

at most |V | iterations involved in both loops. Thus, even a
brute-force implementation will finish in O(|V |f(n)2) time,
where the efficient policy evaluation runs in time f(n) as a
function of the input. With most specific policies, we expect
the best runtime to be substantially faster.

DeCoy is thus polynomial-time as long as a node’s policy
lets it efficiently figure out “what route do I most prefer, given
what the rest of the world has permitted me?” We assert that a
policy which does not allow a tractable answer to this question
is somewhat strange. In a heuristic sense, that would entail the
router “not knowing what is best for it”, even when shown the
full network structure and available paths, and instead awaiting
whatever the notoriously unpredictable network dynamics give
it, with no easily-computable goal in mind.

B. Verifying Safety in Practice

We now present a broad range of realistic policies that turn
out to be optimizable. The BGP policies actually used by
ASes are varied and complex, but fairly well understood [24].
Typically, a router implements a decision process that first
applies import policies to filter out some routes received, then
applies a local ranking to select the most preferred available
route, and then applies export policies to determine whom to
announce it to.

For the purposes of DPVP analysis, we distinguish two
levels of policies: (1) preference policies prefer some routes
less than others, but don’t preclude spurious announcements
of such routes (modeled with the λ local ranking function);
and (2) filtering policies which remove a route at such an
early point, or at such a low level of the router, precluding
even spurious updates involving that route (modeled with the
permitted paths set Pv). BGP import/export constraints will
often be filtering policies. But BGP policies often thought
of as filters, such as “avoidance policies” (like “avoid paths
through country X”) , are often actually just a depreferencing
step in the preference function, without any clear mechanism
forbidding spurious announcements of such a route.

Below, we present examples of common policies classified
as either filters or preferences in a particular way. But we
prefer that the reader remains agnostic about what kinds of
policies to file under which of these two categories. This
decision depends on the details of the mechanisms generating
spurious updates or on the algorithm executor’s decision to
seek a more conservative/robust notion of safety: safety under
a wider range of possible (mis)behaviors. Moving a policy
from “filtering” status to “preference” status can only allow
more spurious update possibilities, yielding a more robust
notion of “safety”, which we think is natural to seek. Re-
markably, in all the cases we consider below, moving policies
we consider as filtering policies to the preference stage would
keep all the policies efficient.

A filtering policy requires that a path not be used even
in absence of any other options, so we expect that each
such black-and-white policy has a strong incentive behind

15

it, typically produced by economic or security constraints.
In most typical scenarios, a non-stub AS is only likely to
filter based on some combination of the next and previous
hop on the path in question (as needed, e.g., for Gao-Rexford
economic constraints [2]), and the destination of the packet
(as needed for blackholing, motivated by security or politics).

In particular, we admit as “typical filtering policies” any
disjunction of polynomially many filtering rules that filter
paths that are:

(a) learned from neighbor u and announced to neighbor v, or
(b) learned from neighbor u, or
(c) announced to neighbor v, or
(d) violating Gao-Rexford constraints, or
(e) leading to a blacklisted destination.

Rule (a) is quite general and rules (b) through (d) can be
implemented by applying rule (a) polynomially many times.

This notably excludes filtering paths that go through another
transit provider somewhere further in the path, but not on
the next hop. The latter type of filtering, for security or for
censorship, is unlikely to be effective, due to path diversity in
the Internet.

Most preference policies observed in practice are covered
by the following (in an arbitrary order):

(i) split the space of paths into some polynomial number of
“categories”, each of which disallows the use of some
subset of nodes and/or edges, and prefer “categories” in
a particular order, or penalize each category differently.

(ii) within each category, prefer routes based on a stratified
shortest path metric with a logarithmic number of strata,
and polynomially many preference levels within each
stratum.

The inner category of stratified shortest path metrics, in-
troduced by Griffin [25], allows a rich space of preferences
based on a general algebraic semi-ring structure that allows
us to “lexicographically stack” several precedence levels of
preference constraints that are algebraically isomorphic to a
shortest path problem. This allows many common policies
beyond just basic shortest-hop-length. For instance, such a
policy can be as complicated as:

1) prefer customer routes; then
2) penalize paths passing through country X by px, and

through countries Y and Z, by pyz; then
3) pick a route using the shortest hop path;
4) of those routes, pick a route that that minimizes some

linear combination of:
a) number of “undesirable” nodes it passes (e.g. low-

performing nodes)
b) average data-plane packet loss rate over the path;

5) then pick the one w/the lexicographically 1st next hop.

The number of strata in this unusually complicated example is
4, and no more than a small constant number of strata should
ever be needed for realistic policies. Indeed, Griffin’s work on
such policies in [25] restricts the consideration to ≤ 3-stratum
policies.

The outer splitting of policies into categories with disal-
lowed nodes/edges allows a yet wider range of policies that
don’t fit neatly into the stratified shortest path framework. E.g.,
it allows a fixed penalty for path visiting some set of nodes
(rather than counting how many nodes are visited), or it allows
any route going through some next-hops (e.g. Gao-Rexford
customers) to be strictly preferred over other next-hops (Gao-
Rexford providers). This in particular allows the full imple-
mentation of any Gao-Rexford business policies, in addition to
complex stratified shortest path policies within each business
relationship class. The only meaningful restriction that we
know of is that the number of categories be polynomial. If
there is a list of more than a logarithmic number of “bonuses”,
each assigning an additive penalty to a path with a particular
non-stratified-shortest-path-based feature, that would generate
a superpolynomial number of categories. While such a policy
could be implemented with using common router policy
description languages, it is not clear that operators would
do so, since it creates an extremely fine-grained distinction
between superpolynomially many combinations of bonuses,
which seems unnecessary in any context we know of. Together,
these two levels of preference policy correspond closely to the
decision processes described in [24].

Theorem IX.3. Any combination of “typical” filtering and
preference policy classes above constitutes optimizable policy.

Proof: We need to demonstrate a polynomial-time algo-
rithm to find a node’s most preferred suffix-consistent path
that would not be filtered by the nodes on it.

We start by modifying the graph to ensure suffix-consistency
and compliance with filtering policies, and then run a modified
version of the Bellman-Ford algorithm, applied separately to
each of the polynomially many categories of the preference
policy.

To ensure suffix-consistency with stable set S, convert into
one-way edges (1) all edges from V \S to S, in that direction;
and (2) the edges of the routing tree, formed by the (suffix-
consistent) path assignments of stable nodes with non-empty
paths toward d. Then remove edges between two stable nodes
that are not used in the routing tree. Any permitted path that is
consistent with these changes is suffix-consistent, since once
it hits a stable node, it can do nothing but follow the stable
tree to the destination.

Then remove any nodes that filter paths to the destination
in question.

Then, separately for each category of the preference func-
tion, remove the disallowed edges or nodes from the network
graph.

We then set a function λv by transforming each stratum
of the stratified-shortest-path preferences into the isomorphic
shortest path problem, and combining all the strata into a
single preference value that follows the lexicographic ordering.
For example, a 2-stratum policy with top stratum ranging from
1 to 9, and a second stratum ranging from 1 to 99 would be
combined into a λv ranging from 101 to 999, with the first
digit corresponding to the first stratum, and the last two digits

16

corresponding to the second stratum. The combined λv still
has a polynomial range, due to the constraints on the strata.

We then run a Bellman-Ford variant to compute paths to
destination minimizing λv . The only additional constraint is
that we must account for node filtering policies, which we
do at each node as the Bellman-Ford wavefront propagates.
Specifically, we maintain not just the shortest path at each
node, but rather each node tracks for each next-hop-and-
previous-hop pair (u, v) separately the shortest path that can
be imported from u and exported to v.

The correctness argument follows from Bellman-Ford. The
runtime scales linearly with the complexity of the preference
policy evaluation, and increases only polynomially from main-
taining shortest path options for each (u, v).

X. HARDNESS OF SOME SAFETY VERIFICATION
FORMULATIONS

We will prove that in the most general settings it is NP
complete to verify whether a DPVP instance is safe. The
intractability relies on route preferences that are typically not
used in practice, such as preference for longer routes over
shorter ones, preference for routes of a particular fixed length,
or filtering policies applied to transit traffic.

BGP permits the use of regular expressions to specify
routing policies. In order to show that verifying the safety
of BGP becomes NP complete when regular expressions are
used to make the problem inputs (which include routing
policies) more compact, we define regular expressions that
are allowed to contain the ”.” metacharacter representing any
one autonomous system. For the purpose of our proof, any
other definition of regular expressions that allows the ”.”
metacharacter is equivalent.

A regular expression is a sequence of metacharacters ”.”
and node numbers. The metacharacter ”.” represents any node
number. For example, the regular expression 3..0 matches
both paths 3, 7, 4, 0 and 3, 1, 9, 0. When regular expressions
are allowed, ranking functions Λ become compact ranking
functions: they provide a ranking of regular expressions rather
than individual paths. Path P1 is preferred to path P2 if the
highest ranked regular expression that matches path P1 is
preferred to the highest ranked regular expression that matches
path P2. If two paths match the same regular expression then
let the lexicographically smaller path be preferred. If a path
does not match any regular expression it is not permitted.

Theorem X.1. The problem SAFE-REGEXP-DPVP of de-
termining the safety of an instance of DPVP with compact
ranking functions is NP-complete.

Proof: The problem is in NP because if we are given a
CoyOTE structure (Π, C), we can check its validity by veri-
fying that the conditions in Definition VIII.1 are satisfied. The
path ranking function λv is polynomial-time computable and
λv(P) can be evaluated in polynomial time for any v and P .
Hence we can also evaluate bestStable(v, C,Π) in polynomial
time, and check each condition of Definition VIII.1.

v5 v0 0
v5 0

v4 v0 0
v4 0
v 05

v5 . 0
v5 . . 0
v5 . . . 0

0 v

v4 . 0
v4 . . 0
v4 . . . 0
v4 0v5 0

v0 v1 0

v4v5
4

v1

v0v0 v4 0
v0 v5 0

v0 0 v3
v1

v2 . 0
v2 . . 0

v2 v3 . 0
v3 . . 0
v3 . . . 0
v3 0

v1 v0 0
v1 0
v1 . 0
v1 . . 0

0
v2 . . . 0
v2 0

v3 01
v1 . . . 0
v1 0

Fig. 14. Example of construction. Solid lines represent edges in the original
graph.

The rest of the proof uses a reduction from the Hamiltonian
cycle problem, which is one of Karp’s 21 NP-complete prob-
lems [26]. An instance of the Hamiltonian cycle problem is an
undirected graph G = (V,E). The problem asks if there exists
a Hamiltonian cycle (a closed loop) that visits each distinct
node exactly once.

Suppose we are given an instance I of the Hamiltonian
cycle problem. We now construct an instance of the SAFE-
REGEXP-DPVP problem D that is not safe if and only if I
has a Hamiltonian cycle.

We construct the graph and route rankings of the SAFE-
REGEXP-DPVP problem as illustrated in Figure 14. Let G =
(V,E) be the graph in the original instance I , let n = |V |,
and let T = {vi : (v0, vi) ∈ E} denote the set of neighbors
of node v0 ∈ V . We modify the graph G by adding vertex 0
representing the origin. We also add edge (vi, 0) for each vi ∈
{T ∪ v0}. Finally, we specify the compact ranking functions.
Node v0 allows route v0...vi0 for each vi ∈ T where the
number of the dots is such that the length of the route is n.
Node v0 also allows v00. Each node vi ∈ T allows route
viv00, and routes vi...0 where the number of dots is such that
the length of the route is between 1 and n − 1, and shorter
routes are strictly preferred to longer ones. Finally, each node
vi ∈ V − {T ∪ 0} allows routes vi...0 where the number of
dots is such that the length of the route is between 2 and n−1,
and shorter routes are strictly preferred to longer ones.

We now show that if I contains a Hamiltonian cycle
then D contains a CoyOTE. Let the Hamiltonian cycle in
I be (v0, v1, ..., vn−1, v0). We construct a CoyOTE (Π, C).
Let C = {v0, v1, v2, ..., vn−1}. Let πv0 = v0v1v2...vn−10,
for each vi ∈ T let πvi = viv00, and for all vj 6= 0,
vj 6∈ T let πvj = vjvj+1...vn−10. It is easy to verify that the
conditions of Definition VIII.1 are satisfied and hence (Π, C)
is a CoyOTE.

It remains to show that if D contains some CoyOTE
(Π, C), then I contains a Hamiltonian cycle. First we show

17

2112*
10

210
2*

x1 x2 Ÿx3 Ÿ x1 x3 Ÿx4

c1 c2

x1 x2 Ÿx3 Ÿ x1 x3 Ÿx4

c’2c’1

0

Fig. 15. Example of construction for a 3-CNF formula (x1 ∨ x2 ∨¬x3) ∧
(¬x1 ∨ x3 ∨ ¬x4). Nodes labeled xi avoid nodes labeled ¬xi.

by contradiction that v0 ∈ C. Assume v0 6∈ C. There are two
cases, either πv0 = v0...vi0 or πv0 = v00. If πv0 = v0...vi0
then by Lemma VIII.1 each v ∈ πv0 is stable, and hence
each v ∈ V is stable. This contradicts the fact that (Π, C)
is a CoyOTE because condition ii of Definition VIII.1 is not
satisfied. If πv0 = v00 we reach a contradiction as follows.
Nodes vi ∈ T are stable because their highest ranked path
viv00 is permanently available. It is easy to verify that the
remaining nodes vi ∈ V − {T ∪ 0} are also stable because
they strictly prefer shorter paths over longer ones, reaching
the same contradiction as before.

Since v0 ∈ C we must have πv0 6= v00 because 0 6∈ C. Then
πv0 = v0...vi0 and we know that πv0 is a valid loop free path
in the graph G = (V,E) of instance I . vi ∈ T and hence
(vi, v0) ∈ E. Therefore v0...viv0 is the sought Hamiltonian
cycle in the original graph G.

Next we show that if we allow each node v ∈ V to
filter routes that contain a node belonging to an arbitrary
subset of nodes Av , safety verification becomes NP-complete.
We extend the route filtering and route preference rules
of Section IX-B to include this filtering step and show
NP-completeness.

Theorem X.2. The problem SAFE-DECISION-DPVP of de-
termining the safety of an instance of DPVP where node v ∈ V
filters routes containing any node a ∈ Av and otherwise
implements the filtering and preference rules of Section IX-B
is NP-complete.

Proof: The problem is in NP by similar observation as
in the proof of Theorem X.1. To show NP completeness we
reduce from 3-SAT [26].

We transform a 3-CNF formula of 3-SAT into an instance of
SAFE-DECISION-DPVP that is safe if and only if the formula
is not satisfiable. This transformation is depicted in Figure 15.
For each clause the graph contains the following gadget. If
the ith clause in the formula is (x∨ y∨ z), the graph contains
nodes ci and c′i connected through three intermediate nodes
labeled x, y and z. The graph also contains nodes 0, 1 and 2.
Node 2 is connected to c1, c′i is connected to ci+1, and the

last node c′i is connected to 0.
Node 1 prefers routes learned from node 2 and node 2

prefers routes learned from node 1. Nodes labeled with a
variable x avoid every other node labeled with its negation
¬x. Node c1 also avoids node 2. It is easy to see that the
original formula can be satisfied if and only if node 2 can use
a path to the origin 0 passing through the nodes corresponding
to the variables that satisfy each clause. If and only if this path
exists nodes 1 and 2 are in dispute and the DPVP instance is
not safe.

XI. CONCLUSION

In this paper we explored BGP safety. We observed that
a number of BGP implementation features cause spurious
announcements — temporary announcements of routes that are
not the most preferred ones. In order to study the properties
of BGP in the presence of these spurious announcements, we
introduced DPVP, a new dynamic model of BGP. This model
proved to be a powerful tool with favorable properties that
allowed us to prove the necessary and sufficient conditions of
convergence in that model, a question that remained elusive
with earlier models of BGP. We also introduced the DeCoy
algorithm, an efficient polynomial time algorithm that verifies
BGP safety for a rich group of policies that are representative
of the configurations used in practice. This also resolves
an important question that is of practical interest to both
researchers and network operators who need to verify the
correctness of their configurations. Design of a distributed
privacy-preserving version of the DeCoy algorithm that does
not require autonomous systems to reveal their routing policies
is the subject of our ongoing investigation.

REFERENCES

[1] J. W. Stewart, III, BGP4: Inter-Domain Routing in the Internet.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[2] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 681–692, 2001.

[3] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” in Proc. of INFOCOM, 2009, pp. 549–557.

[4] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2, pp.
232–243, 2002.

[5] L. Gao, T. Griffin, and J. Rexford, “Inherently safe backup routing with
BGP,” in Proc. of INFOCOM, 2001, pp. 547–556.

[6] L. Cittadini, G. D. Battista, M. Rimondini, and S. Vissicchio, “Wheel
+ ring = reel: The impact of route filtering on the stability of policy
routing,” in Proc. of ICNP, 2009, pp. 274–283.

[7] T. G. Griffin, A. D. Jaggard, and V. Ramachandran, “Design principles of
policy languages for path vector protocols,” in Proc. of ACM SIGCOMM,
2003, pp. 61–72.

[8] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of autonomy
for the expressiveness of policy routing,” in SIGCOMM 2005, pp. 25–36.

[9] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path-
vector protocols,” in Proc. of ICNP, 1999, pp. 21–30.

[10] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap damping,”
1998, IETF RFC 2349.

[11] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),”
2006, IETF RFC 4271.

[12] E. Keller, M. Yu, M. Caesar, and J. Rexford, “Virtually eliminating
router bugs,” in Proc. of CoNEXT, 2009, pp. 13–24.

[13] W. Sun, Z. Mao, and K. Shin, “Differentiated BGP update processing for
improved routing convergence,” in Proc. of ICNP, 2006, pp. 280–289.

[14] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, 2005.

18

[15] A. Fabrikant and C. H. Papadimitriou, “The complexity of game
dynamics: BGP oscillations, sink equilibria, and beyond,” in Proc. of
SODA, 2008, pp. 844–853.

[16] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” 1995,
IETF RFC 1771 (obsoleted by RFC 4271).

[17] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” in Proc. of ACM SIGCOMM, 1999, pp. 277–288.

[18] L. Cittadini, G. D. Battista, and M. Rimondini, “How stable is stable in-
terdomain routing: Efficiently detectable oscillation-free configurations,”
Dept. of CS&Automation, Roma Tre Univ., Tech. Rep. DIA-132-2008,
July 2008.

[19] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
parallelism to scale software routers,” in Proc. of SOSP, 2009.

[20] “Router reliability research (R3),” 2010, http://r3.cis.upenn.edu/.
[21] T. Bates, R. Chandra, and E. Chen, “BGP route reflection - an alternative

to full mesh iBGP,” 2000, IETF RFC 2796.
[22] D. Obradovic, “Real-time model and convergence time of BGP,” in Proc.

of INFOCOM, 2002, pp. 893–901.
[23] A. Fabrikant, U. Syed, and J. Rexford, “There’s something about MRAI:

Timing diversity exponentially worsens BGP convergence,” 2010, in
submission.

[24] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,” IEEE
Network Magazine, vol. 19, no. 6, pp. 5–11, 2005.

[25] T. G. Griffin, “The stratified shortest-paths problem,” in Proc. COM-
SNETS, 2010, pp. 1–10.

[26] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
Plenum Press, 1972, pp. 85–103.

