
BGP Safety with Spurious Updates
Martin Suchara, Alex Fabrikant, and Jennifer Rexford

Computer Science Department, Princeton University
Email: {msuchara, afabrika, jrex}@cs.princeton.edu

Abstract—We explore BGP safety, the question of whether a
BGP system converges to a stable routing, in light of several BGP
implementation features that have not been fully included in the
previous theoretical analyses. We show that Route Flap Damping,
MRAI timers, and other intra-router features can cause a
router to briefly send “spurious” announcements of less-preferred
routes. We demonstrate that, even in simple configurations, this
short-term spurious behavior may cause long-term divergence in
global routing. We then present DPVP, a general model that uni-
fies these sources of spurious announcements in order to examine
their impact on BGP safety. In this new, more robust model of
BGP behavior, we derive a necessary and sufficient condition
for safety, which furthermore admits an efficient algorithm for
checking BGP safety in most practical circumstances — two
complementary results that have been elusive in the past decade’s
worth of classical studies of BGP convergence in more simple
models. We also consider the implications of spurious updates for
well-known results on dispute wheels and safety under filtering.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1], the de facto in-
terdomain routing protocol in the Internet, offers autonomous
systems (ASes) the flexibility to specify their custom routing
policies. Unfortunately, this flexibility may result in policy
choices that cause persistent oscillations. Such oscillations
unnecessarily increase the number of BGP updates and nega-
tively impact network traffic. Over the past decade, researchers
have developed a good understanding of which combinations
of routing policies lead to oscillations [2]–[8]. Most of these
results were based on an abstract model of the interdomain
routing system — namely the Simple Path Vector Protocol
(SPVP) [9] — that captures how each node selects the highest-
ranked path consistent with its neighbors’ decisions.

This paper shows that local engineering decisions such
as BGP timers and internal router structures can produce
short-term artifacts that lead to protocol oscillations not well
modeled by SPVP. To capture how these local phenomena
affect global convergence, we introduce an extension of SPVP
called the Dynamic Path Vector Protocol (DPVP). Although
DPVP is seemingly more complicated than SPVP, it actually
yields to analysis more easily: we show that DPVP admits
a necessary and sufficient condition of convergence. Further-
more, we give an algorithm that for most realistic settings
efficiently determines whether a DPVP instance is safe, i.e.,
whether the BGP system as modeled by DPVP converges.

A. Spurious Selection of Lower-Ranked Routes

Earlier studies of interdomain routing assume that routers
select and announce the most-preferred available route. How-
ever, routers in practice may temporarily announce other

recently-available routes, or even withdraw a route when the
destination appears reachable. We call such unexpected an-
nouncements and withdrawals spurious updates. These spuri-
ous updates can be caused by several router-level mechanisms
that delay the propagation of update messages (to reduce
overhead and improve stability) or limit visibility into the
alternate routes (to improve scalability), including:

• Route flap damping [10]: Route flap damping temporar-
ily suppresses a route if it appears unstable. As a result,
a router may temporarily select a less-preferred route.

• MRAI timers [11]: The Minimum Route Advertisement
Interval (MRAI) timer paces BGP update messages. De-
laying message delivery can cause a router to temporarily
select a lower-ranked alternate route.

• Router queuing mechanisms: The BGP message queues
between routers delay the delivery of update messages.
These queues, coupled with optimizations that stop gen-
erating new messages when the queue grows large, can
lead to delays in selecting the highest-ranked route.

• Cluster routers: Large routers are distributed,with BGP
sessions terminating on different processor blades. To
improve scalability, these blades do not exchange full in-
formation with each other, which may lead to a temporary
selection of a less-preferred route.

All spurious updates share two common properties: (i) a
router can only send spurious updates for a short time after
receiving information changing its most preferred route, and
(ii) spurious updates are based on routes that have been
recently available (including spurious withdrawals because “no
route” is always available). DPVP allows any spurious update
with these properties. We argue that such model is general
enough to capture all spurious updates; the extended version
of this work [12] shows that the model is not overly broad.

Just as local routing policies can affect global conver-
gence [9], these local engineering decisions have global
consequences—by triggering oscillations and slowing con-
vergence exponentially. Eliminating all sources of spurious
updates would require major changes to router design and the
BGP protocol. Some of these mechanisms are important for
reducing protocol overhead and improving scalability, making
it unappealing to eliminate them entirely. Protocol designers,
router designers, and network operators could strive to reduce
the frequency and duration of spurious updates. However, it
is not clear that such a quest is warranted or plausible. Rather
than advocating for a world free of spurious updates, we argue
for a better understanding of their consequences.



2

B. DPVP Convergence

While allowing spurious updates shrinks the set of BGP
configurations that are safe from oscillations, we establish that
most of the well-studied situations deemed safe under SPVP
remain safe even under DPVP. In particular, we strengthen the
SPVP-based results of [9] to show that even DPVP is safe in
a network without a “dispute wheel” structure. Thus, spurious
updates do not affect the large body of research on safety in
dispute-wheel-free settings. In contrast, BGP safety in more
general settings, as well as convergence time, can be adversely
affected by spurious updates, as illustrated in Section III.

Our main positive result on convergence is a combinato-
rial necessary and sufficient characterization of safe DPVP
instances, which is tractable under most typical settings. We
show that a DPVP instance is unsafe if and only if it admits a
certain combinatorial structure we call a “CoyOTE” (explained
in Section V). Although DPVP adds the “complexity” of spu-
rious updates over SPVP, this characterization is surprisingly
nice in several aspects that have been elusive for SPVP:
• Bijectivity: The absence of CoyOTEs is necessary and

sufficient. Prior work has only yielded sufficient but
not necessary [2], [5]–[7], [13], or necessary but not
sufficient [3], [8] conditions of convergence.

• Tractability in most common cases: Checking whether a
network admits a CoyOTE under general routing policies
is NP-complete, just like the weaker question of checking
for the sufficient-only condition of No-Dispute-Wheel
[9]. Luckily, we were able to find a polynomial time
algorithm that verifies safety of BGP configurations for
virtually any policy used by network operators in practice.

• Verifiability: Given a CoyOTE structure, one can easily
verify its validity as a proof that a network is unsafe.
On a more theoretical note, this also places the formal
problem of DPVP safety in complexity class CoNP, rel-
atively much easier than the PSPACE-complete problem
of checking safety in a comparable SPVP setting [14].

Roadmap

In Section II we introduce our DPVP model. We then
show several examples of oscillations that would have been
stable without spurious updates. Section III shows examples
of results in the literature that, while correct under the SPVP
model, no longer hold in the presence of spurious updates.
We show the No-Dispute-Wheel DPVP safety condition in
Section IV, and the necessary and sufficient conditions in
Section V. Section VI presents an algorithm for checking
DPVP safety in polynomial time for practical BGP policies.

II. DPVP: BGP MODEL WITH SPURIOUS UPDATES

To study the dynamic properties of BGP, we introduce
the Dynamic Path Vector Protocol (DPVP), a formal model
that allows transmission of stale information in spurious
route updates. The DPVP model specifies the dynamics of
routing information exchange between routers in the SPP
framework, which we review in Section II-A. Section II-B
informally explains how we model spurious updates. Then,

Section II-C defines DPVP dynamics by specifying how a
node exchanges routing information and selects a preferred
route. A few examples of configurations that oscillate due
to spurious announcements are in Section II-D. Many more
examples can be found in the long version of this paper [12].

A. SPP Review

The Stable Paths Problem (SPP) due to Griffin et al. [4]
consists of a graph G = (V,E) where each node represents
a single BGP speaker, and a fixed node 0 which all other
nodes try to reach. Each node v ∈ V has its own set Pv of
permitted paths to the origin, and a ranking function λv . If for
two permitted paths λv(P ) < λv(Q), then path P is preferred
to Q by v. The preferences are strict, i.e., if λv(P ) = λv(Q)
then P = Q or the first hop of P and Q is the same. The
empty path ε is always permitted and is the lowest ranked.
Paths are represented as sequences of nodes (vk vk−1...v10),
PQ is a concatenation of the two paths, and P [vi] denotes a
subpath from node vi to the origin 0.

A solution of the SPP is a path assignment π that maps
each node v to a path in Pv , that is stable. The assignment π
is stable if π(v) = best(choices(π, v), v), where:

choices(π, v) =

{
{(v u)π(u)|(v, u) ∈ E} ∩ Pv v 6= 0
{ε} o.w.,

and if W ⊂ Pv consists of paths with distinct next hops:

best(W, v) =

{
P ∈W with maximal λv(P ) W 6= ∅
ε o.w.

As DPVP is grounded in SPP, we refer the reader to [4] or
[12] for a systematic treatment.

B. Modeling the Spurious Updates

For a short period after receiving information that changes
the best path, a router may temporarily transmit stale in-
formation in the form of spurious route announcements or
withdrawals. An upper bound on the duration of the spurious
behavior is required to prevent propagation of arbitrarily old
information. The DPVP model introduces a universal fixed
constant τ 1 that serves two purposes. First, it limits the interval
after a route change at node v during which stale information
may propagate from that node. Second, any stale information
that propagates from node v at time t must have been available
at node v at some point in the time interval [t− τ, t].

Specifically, the constant τ serves as an upper bound on the
communication delay caused by queuing delays, the MRAI
timer, the suppression period of route flap damping, and any
other source of spurious behaviors, current or future. Indeed,
we deliberately do not model the specific sources of spurious
updates, so as to not limit our model to the sources thus
far observed. Any future design decision that violates this
model, i.e., potentially sends spurious updates indefinitely,
would surely be rejected by the designers.

1Stability of an SPP instance in the DPVP model is independent of the
actual numerical value of τ .



3

C. Dynamic Path Vector Protocol (DPVP)

The current time of a global clock is denoted by t.
The internal state maintained by each node v consists of

the following. The assigned path π(v) represents the most
preferred route that is consistent with the information received
by the node at the present time. The structure rib-in(v ⇐ w)
maintained by node v contains the most recently processed
information received from node w. The set recentRts(v)
contains all routes that node v has had recently available. This
set includes any route that is available at the present time t
according to the information in the rib-in structure, as well
as any route that was available in the time interval [t − τ, t].
The state also includes variable stableTime(v) which encodes
information about stability of the node as defined below.

The stability of a node determines the properties of the
information transfer from that node. The node v is stable if
t ≥ stableTime(v) and it is not stable otherwise. If a node v
is stable, any information transfer in the system concerning
the assigned path π(v) must be accurate, i.e., the neighbors
of node v learn the correct most recent route π(v). However,
if a node is not stable, then the neighbors may receive stale
information. The stale information received from node v may
include any route from the set recentRts(v).

The dynamic route information exchange is facilitated by
edge activations. Simultaneous edge activations are allowed.
When the edge (w, v) activates, the process shown in Figure 1
is executed. The “if” branch on lines 2–3 is executed if at the
time of activation the node w is stable. The rib-in(v ⇐ w)
variable is updated with the most recent information from node
w. If node w is not stable, then lines 4–6 are executed, and
node v learns information that is potentially stale. Stale infor-
mation either contains a route withdrawal, or announcement
of some recently available route at node w. The commands
on lines 7–9 update the list of the recently available routes
recentRts(v). Newly available routes are added, and if a route
becomes unavailable at time t, it is scheduled for removal from
recentRts(v) at time t + τ . Finally, the if statement on lines
10–12 determines whether the best route available to node v
consistent with the information received thus far changes. If
the route changes then π(v) is updated accordingly and the
node is marked as unstable for a time period τ .

An edge activation sequence σ of sets (E0, E1, . . .) has Et
containing the edges that are activated at time t. An activation
sequence is fair if each edge e ∈ E appears in the sequence
infinitely often, i.e., all node pairs continue exchanging routing
information indefinitely.

A vertex activation sequence ρ of sets (V0, V1, . . .) has Vt
containing the vertices that are activated at time t. A vertex
v activates when all its adjacent edges (w, v) ∈ E activate
simultaneously. We introduce vertex activations merely for
convenience to allow more compact notation.

DPVP is stable at time t if the path assignment π is stable
and it has not changed in the time interval [t− τ, t]. Note that
if DPVP is stable, it is impossible for nodes to exchange stale
information, and the state cannot change at any later time.

activate(v ⇐ w)

1: old-rib-in =rib-in(v ⇐ w)
2: if t ≥ stableTime(w) then
3: rib-in(v ⇐ w) =(vw)π(w)
4: else
5: pick some P ∈ {recentRts(w) ∪ ε}
6: rib-in(v ⇐ w) =(vw)P
7: if rib-in(v ⇐ w) 6= old-rib-in then
8: add rib-in(v ⇐ w) to recentRts(v)
9: remove old-rib-in from recentRts(v) at time t+ τ

10: if π(v) 6= best(rib-in, v) then
11: π(v) =best(rib-in, v)
12: stableTime(v) =t+ τ

Fig. 1. The DPVP model for router v responding to the activation of edge
v ⇐ w, i.e. v processing information from w.

DPVP is safe if any fair activation sequence, from any
starting state, always converges to a stable state. We also define
safety under filtering in the same way as [6], [8] do. DPVP
is safe under filtering if it remains safe under removal of
arbitrary subsets of paths from an arbitrary subset of the Pvs
(this generalizes the removal of arbitrary nodes and edges).

The BGP message queues in the classical SPVP model [4]
are not explicitly modeled by DPVP. However, the DPVP
model captures any behavior that a queue could produce. E.g.,
if a node in the SPVP model processes a message from its
queue that is outdated by another update from the same sender,
DPVP models this as a spurious update. On the other hand,
DPVP intentionally allows more varied behavior than per-edge
queues do. While features like route flap damping may be
modeled by particular patterns of dropped messages, some
patterns of spurious updates valid in DPVP will not correspond
to any possible queue behavior. We note that an edge in
DPVP does not necessarily model a single BGP session, but
rather a connection between two potentially large, complex,
distributed routers, which may share multiple physical links
for redundancy, or might even have several BGP sessions.
Since the implementation details of intra-router architectures
are proprietary, we intentionally limit our assumptions about
DPVP node interactions. We only assume what we expect all
routers to obey: the router acts on some reasonable timescale
consistently like a monolithic BGP speaker, independently of
its internal complexities.

If a DPVP instance models AS-level behavior, there are
many more possible sources of spurious updates from inter-
router interaction. Those spurious events would not be well
represented by queues assigned to entire ASes.

D. Examples of Oscillations

Here we provide two simple examples of oscillations due
to spurious updates in DPVP. The spurious updates in the
first example are caused by route flap damping, and in the
second by features of a specific router architecture. Many more
examples can be found in the long version of the paper [12].

Example of a network configuration is depicted in Fig-
ure 2. The network contains three nodes which attempt to



4

130
10

210
202

0

1

3210

0

30
3210
320
30

3

Fig. 2. Example DPVP oscillation
caused by spurious announcement
of route 30 by node 3.

210
2020 2

A
1 B

130
10

ε

A

0

3210
3203

30

Fig. 3. Temporary lack of visibil-
ity of route 20 by processor blade
B causes permanent oscillation.

obtain a route to node 0. Each node is annotated with its
permitted paths, and these paths are listed in the order of
decreasing preference. For example, node 1 prefers the path
130 over 10. It is easy to verify that if no router sends
spurious updates, the configuration is safe, and every fair
activation sequence leads to the state (10, 210, 3210), i.e,
nodes 1, 2, and 3 use paths 10, 210, and 3210, respectively.
To demonstrate that the configuration is unsafe in DPVP, we
must find an oscillation, i.e, an initial path assignment, an
activation sequence that activates every edge, and possible
spurious announcements that cause a cyclical change of the
path assignment. As long as the same activation sequence and
spurious announcements are repeated, the oscillation persists.

The shorthand transition notation describes the perma-
nent oscillation:

(10, 20, 320)
2−→ (10, 210, 320)

3−→ (10, 210, 3210)
1;(1⇐3:30)−−−−−−−→

(130, 210, 3210)
1,2−−→ (10, 20, 3210)

3−→ (10, 20, 320).

The nodes or edges activated in each step are listed above
the arrow. For example, the path assignment (10, 210, 320)
is reached from the initial state by activating node 2. If a
spurious announcement is made, this is also described above
the arrow. For example,

1;(1⇐3:30)−−−−−−−→ represents an activation of
node 1 where node 1 learns about route 30 from its neighbor 3.
The spurious announcement 30 is allowed by DPVP because
recentRts(3) contains route 30 and the path assignment of
node 3 keeps changing during the outlined oscillation.

Route flap damping (RFD) [10] can cause the spurious
announcement 30, and the oscillation in Figure 2. When a
router receives frequent updates from a neighbor, all routes
from that neighbor may be temporarily suppressed in the
hope of improving stability. Upon activating for the first time,
node 3 processes the update from node 2, triggering the RFD
mechanism which suppresses all routes from 2. Since route
3210 is suppressed, node 3 spuriously announces 30 instead.
Once 3210 is no longer suppressed, node 3 stops making
spurious announcements and the system eventually enters state
(10, 20, 320), the same state it started in2.

Distributed cluster-based router architecture is respon-
sible for oscillations in our second example. This increasingly

2Here RFD causes a persistent oscillation, in contrast to previous work
illustrating how RFD can lead to slower convergence to a stable state [15].

popular architecture parallelizes functionality across multiple
cores or server blades within each router [16], [17]. Each
control processor blade handles a subset of the BGP sessions,
runs its own software, and exchanges reachability information
with other blades. While the details of this information ex-
change differ from one implementation to another, scalability
requires each processor blade to usually only announce the
currently used route (the best route) to the other blades. Due
to asynchrony, a blade may be temporarily unable to see a
more preferred route, leading to spurious announcements.

The oscillation relies on a similar configuration as before,
but now node 2 is implemented as a cluster-based router, as
depicted in Figure 3. The following oscillation may occur:

(130, 210, 3210)
2−→ (130, 20, 3210)

1,3;(3⇐2:ε)−−−−−−−→ (10, 20,

30)
2−→ (10, 210, 30)

1,3−−→ (130, 210, 3210).

In the second round of activations, node 3 receives a spurious
withdrawal from node 2. This is explained as follows. Initially,
node 2 was in state 210 and blade B used and exported
the route 210. However, after node 1 switched to state 130,
the route 210 was implicitly withdrawn, and blade B was
temporarily left without a route. Before learning about route
20 from the other blade, blade B sent a spurious withdrawal to
node 3. Once again, because without spurious announcements
the example is stable, we have shown that spurious announce-
ments may be responsible for unexpected oscillations.

III. IMPACT ON CONVERGENCE

After having established that spurious updates may cause
permanent oscillations in configurations that are otherwise
stable, it is natural to ask if any existing results concerning
convergence of BGP change with the introduction of spuri-
ous updates. We show in Section III-A that an exponential
slowdown in convergence time may occur. Furthermore, in
Section III-B we show an example of safety conditions in the
literature that ensure safety in the absence of spurious updates,
but that no longer hold in their presence.

A. Slower than Expected Convergence

Understanding and improving convergence time [18], [19]
has been a central question in the BGP literature. While the
lower bound on convergence is in general exponential [20], a
more favorable bound can be obtained in a Gao-Rexford [2]
model of routing. In the Gao-Rexford model, every pair of
neighboring ASes has a customer-provider relationship or
a peering relationship, and no AS can become an indirect
provider of itself. Furthermore, every AS prefers customer
routes over routes learned from peers or providers.

In the Gao-Rexford setting, the convergence time of BGP
is linear in the depth of the customer-provider hierarchy,
or more precisely it is at most 2l + 2 phases where l is
the length of the longest directed customer-provider chain in
the AS graph [3]. Phase is defined as a period of time in
which all nodes get at least one update message from each
neighboring node, and all nodes are activated at least once. We



5

210

10

210
20

320
302

1 3

0 430
404

540
50l‐1

5

(a)

210

10

210
20

2

1

0

(b)

Fig. 4. Slowly converging network configurations.

show an example where, if spurious updates are allowed, the
convergence takes (2k + 1)l−2 phases where k is the number
of spurious messages that a node is allowed to announce after
each route change. Our example shows that spurious updates
may cause an exponential slowdown of convergence even in
the Gao-Rexford setting.

Figure 4(a), which originally appeared in [3], depicts a
network with l nodes where node 1 prefers route 10, and
every other node i prefers route i(i−1)0 over the direct route
i0. This set of path preferences is compatible with the Gao-
Rexford constraints if node 0 is a customer of every other
node and node i−1 is a customer of node i for 2 ≤ i ≤ l−1.
The longest directed customer-provider chain has length l. The
arrows in the figure describe the initial routing choices.

Let us first show that the smaller topology in Figure 4(b)
converges in (2k+ 2) phases. Spurious updates are only used
when we explicitly mention them, and by assumption both
nodes activate simultaneously. The initial state (ε, 20) becomes
(10, 20) after the first phase, and (10, 210) after the second
phase. Node 1 spuriously withdraws the route from node 2
in the third phase, bringing the system to state (10, 20). This
sequence is repeated. The kth spurious update is made in phase
2k + 1, and the final state is reached in phase 2k + 2. Note
that the route of node 1 changed once, but the route of node
2 changed 2k + 1 times.

Now it is easy to see that the example in Figure 4(a)
converges in (2k+1)l−2 phases. Node i only makes a spurious
announcement if all nodes with higher node number already
emitted k such announcements after their last route change. If
the route chosen by node i changes, the route chosen by node
i+1 changes 2k+1 times, and thus the route chosen by node
l − 1 changes (2k + 1)l−2 times.

B. BGP Without a Reel Unsafe

Although BGP convergence without spurious updates has
been studied extensively, prior work either concerns sufficient
or necessary conditions for safety. A classical result shows that
the absence of a structure called a dispute wheel3 is sufficient

3Dispute wheel and dispute reel are formally specified in Definitions IV.1
and IV.2.

1320
10

3210
320

3110
130

30
320

130

3

0

1

2130

210

2 2130
20
210

2

Fig. 5. The graph does not contain a reel. However, spurious updates may
cause oscillations.

for safety [4]. Safety is also guaranteed when routing policies
satisfy the conditions of Gao and Rexford [2].

The strongest result concerning BGP safety prior to the
publication of our work has been obtained by Cittadini et
al. [6]. They provide the necessary and sufficient conditions
for safety with route filtering. Filtering allows each node to
remove an arbitrary subset of paths from the list of permitted
paths. They prove that instances that do not contain a dispute
reel3 are safe under any filtering, and if an instance contains a
dispute reel, then there exists a filtering that allows oscillations.
Note that these conditions become sufficient conditions for
safety in the general setting without filtering. The result of
Cittadini et al. no longer holds if we allow spurious updates.

Consider the example in Figure 5. This is the same topology
that appears as Figure 4 in the original work of Cittadini [6] as
an example of a safe topology without a reel (the dispute wheel
with pivot vertices 1, 2, and 3 is not a reel because each pivot
vertex appears in three rim paths, violating Definition IV.2).
However, the following oscillation may occur:

(10, 20, 30)
1,2,3;(2⇐1:130),(3⇐2:210),(1⇐3:320)−−−−−−−−−−−−−−−−−−−−−−−−→ (1320, 2130,

3210)
1,2,3−−−→ (10, 20, 30).

This is a valid oscillation in the DPVP model where the
spurious announcements may be caused, e.g., by the details
of cluster-based hardware implementation of routers 1, 2, and
3. To make a spurious announcement, router 1 needs to have
one router blade responsible for the BGP session with router 0,
and another blade responsible for the other two BGP sessions.
Routers 2 and 3 could use similar hardware architecture.

IV. BGP SAFETY WITH SPURIOUS UPDATES

The unexpected oscillations due to spurious updates beg the
question of whether previous results on BGP safety continue
to hold under the DPVP model. Fortunately, in Section IV-A
we are able to extend the well-studied No-Dispute-Wheel
condition [4], sufficient for BGP safety in the SPVP model,
to show that it still applies with spurious updates. This result
implies that the class of systems that oscillate due to spurious
updates is relatively small, and most importantly, earlier results
that use the absence of dispute wheel as a condition of
safety hold even in the presence of spurious updates. While
Section III-B showed that the absence of dispute reels is



6

Qk‐1

Q0

Q1

Qi+1 Qi

Rk‐1 R0

Ri

u1

0

u0

uiui+1

uk‐1

Fig. 6. A dispute wheel of size k.

not sufficient for safety under filtering with spurious updates,
Section IV-B introduces a modified structure, a two-third reel,
which we show to be necessary and sufficient.

A. No Dispute Wheel Implies Safety

The classical result by Griffin et al. [4] shows that BGP is
safe in the SPVP model in the absence of dispute wheels like
the one in Figure 6, formally defined as follows:

Definition IV.1. [4] A dispute wheel W = (U,Q,R) of size
k is a set of nodes U = {u0, u1, ..., uk−1} and sets of paths
Q = {Q0, Q1, ..., Qk−1} and R = {R0, R1, ..., Rk−1} such
that the following conditions hold. For each 0 ≤ i ≤ k − 1,
when all subscripts are interpreted modulo k:

(i) Qi is a path from ui to the origin.
(ii) Ri is a path from ui to ui+1.

(iii) Qi ∈ Pui and RiQi+1 ∈ Pui .
(iv) λui(Qi) ≤ λui(RiQi+1).

We strengthen Griffin et al.’s result to show that even with
spurious updates, modeled by DPVP, BGP is still safe if
there is no dispute wheel. This automatically strengthens the
applicability of the large body of BGP literature that relies on
the original No-Dispute-Wheel result under SPVP. We show:

Theorem IV.1. DPVP instance with no dispute wheel is safe.

We note that although the absence of a dispute wheel is
sufficient for safety, it is not necessary in both DPVP and
SPVP. That is, dispute wheels can occur in safe instances of
the routing problem.

Theorem IV.1 can be derived as a corollary of the stronger
result in Section IV-B.

B. Safety with Filtering

Safety under filtering [8] studies convergence where an
arbitrary subset of routes may be removed from the set of
permitted paths Pv . In [6] it was shown that the necessary and
sufficient condition for safety under filtering in the classical
SPVP model is the absence of a particular type of dispute
wheel called a dispute reel:

Definition IV.2. [6] A dispute reel is a dispute wheel which
satisfies the following conditions:

(i) Pivot vertices appear in exactly three paths: for each
ui ∈ U , ui only appears in paths Qi, Ri and Ri−1.

(ii) Spoke and rim paths do not intersect: for each u 6∈ U ,
if u ∈ Qi for some i, then no j exists such that u ∈ Rj .

(iii) Spoke paths form a tree: for each distinct
Qi, Qj ∈ Q, if v ∈ Qi ∩Qj , then Qi[v] = Qj [v].

Section III-B showed that this result does not hold when we
account for spurious updates. We define a generalized version
of the dispute reel structure, which we prove to be exactly
what is needed to identify the systems that are unsafe, but
only due to spurious updates. That is, we prove:

Theorem IV.2. BGP, as modeled by DPVP, is safe under
filtering if and only if the network has no “two-third reel”:

Definition IV.3. A two-third reel is a dispute wheel which
satisfies the second and third condition of dispute reel:

(i) Spoke and rim paths do not intersect: for each u 6∈ U ,
if u ∈ Qi for some i, then no j exists such that u ∈ Rj .

(ii) Spoke paths form a tree: for each distinct
Qi, Qj ∈ Q, if v ∈ Qi ∩Qj , then Qi[v] = Qj [v].

The intuition for removing the first condition in the dispute
reel definition is that spurious behavior of DPVP effectively
allows us to “mangle” the rim of the reel, with pivots appearing
in multiple rim paths. This would prevent divergence in SPVP,
since a pivot would have to stick to one of its options in
between its activations, preventing its participation in other
pivots’ rim paths. However, with spurious announcements, the
“multi-tasking” pivot’s internal structure may allow it to keep
spuriously announcing some of its other available routes in
such a pattern as to keep the oscillation going. A full proof of
Theorem IV.2 appears in the long version of this paper [12].

V. THE NECESSARY AND SUFFICIENT CONDITIONS

We now formulate a sufficient and necessary condition for
safety in the DPVP model. We show that a system is safe
if and only if the configuration allows the existence of a
particular combinatorial structure in the network. Since such a
structure can serve as an easy-to-check proof of the system’s
DPVP safety, the problem of deciding DPVP safety is in
NP, which contrasts the intractability results that show SPVP
safety checking is PSPACE-complete [14]. Most remarkably,
our results in Section VI show that we can check a DPVP
system for safety in polynomial time in most practical settings.

Informally, the network will be unsafe if and only if it
admits a mapping of each node to a “selected path” and a
partition of the nodes into two non-empty sets:

1) Stable nodes that select paths which (i) use only other
stable nodes, (ii) comprise a consistent routing tree to the
destination when taken together, and (iii) are the most
preferred such paths for their respective nodes, and

2) Coy nodes that are “coy” about joining that stable tree:
they select a path that starts with another coy node as a
next hop, preferring it over any paths that go straight to
the stable tree.

We will shortly formally define this structure, which we dub a
CoyOTE (for “Coy Optimum at Tree Edges”). We will show
that the stable nodes are guaranteed to reach a stable state
under any activation sequence, while the coy nodes are capable
of triggering DPVP oscillations.



7

Theorem V.1. An instance of DPVP oscillates if and only if
it has a CoyOTE.

To formally define the CoyOTE structure, we’ll need some
intermediate technical definitions:

We use C ⊂ V to denote the set of coy nodes, and always
define S = V \ C to denote the complementary set of stable
nodes. Given a path assignment Π and a coy set C, we define
the set stableChoices(v, C,Π) of all paths available to v that
go directly to the stable set: all P ∈ Pv such that P = (v, u)P ′

where u ∈ S and P ′ = πu. If the set stableChoices(v, C,Π)
is nonempty, let bestStable(v, C,Π) be the best such path:
the unique P ∈ stableChoices(v, C,Π) for which λv(P ) is
maximal. Otherwise let bestStable(v, C,Π) be ε.

Definition V.1. The pair (Π, C) of a path assignment Π and
a coy set C ⊂ V (with the stable set defined as S = V \ C)
is a CoyOTE if the following conditions hold:

(i) Stable origin: The origin is stable, 0 ∈ S.
(ii) Coy existence: There are coy nodes, C 6= ∅.

(iii) Best stable path at stable node: A stable node se-
lects its best stable path — for all v ∈ S, πv =
bestStable(v, C,Π).

(iv) Coy node prefers a coy path: a coy node selects a path
learned from a coy node — for all v ∈ C we have πv =
(v, vnext, . . . , 0) with vnext ∈ C. The selected route must
be higher ranked than v’s most preferred stable route,
λv(πv) > λv(bestStable(v, C,Π)).

(v) Consistency with stable suffixes: Every node’s selected
path is “suffix-consistent” with (S,Π), as defined below.

Definition V.2. A path πv is suffix-consistent with (S,Π) if
every suffix of πv that starts with a node s ∈ S is consistent
with πs: if πv = (v, . . . , s, Ps, 0) and s ∈ S (Ps is an arbitrary
subpath), then πs = (s, Ps, 0).

We will need the following easy corollary of the definition:

Lemma V.1. In a CoyOTE:
(i) If v is stable (and πv 6= ε), then πv = (v, PSv , 0), where

PSv is a possibly-ε subpath containing only stable nodes.
(ii) If v is coy, then πv = (v, PCv , P

S
v , 0), where PCv is a non-

empty subpath consisting of only coy nodes, and PSv is a
possibly-empty subpath consisting of only stable nodes.

Proof: By induction on the length of paths assigned by
Π. Assuming a node chooses a path where a coy node occurs
after a stable node, by condition v there is a suffix (s, c, . . . , 0)
with s ∈ S, c ∈ C, but then πs violates condition iii. With
condition iv, the rest follows inductively.

We now tackle the two directions of Theorem V.1 sepa-
rately: Lemma V.2 and Lemma V.4 establish that a CoyOTE is
sufficient and necessary, respectively, for oscillations in DPVP.

Lemma V.2. If a DPVP instance has a CoyOTE, then the
DPVP instance can oscillate.

Proof: Given a CoyOTE (C,Π), it suffices to find an
infinite fair activation sequence in which the state of the system
continues changing.

Consider starting with an empty path assigned to each node
(e.g., as if the destination just went online). The activation
sequence starts by every stable node v ∈ S with πv 6= ε
activating in the order of breadth-first search on the stable node
tree, from the destination outward, so that each such node gets
its path in πv immediately, and never changes again.

After that, all the coy nodes v ∈ C activate in a loop so that
each one chooses the path πv at some point. Pick some order
of coy nodes, c1...k. For each ci in order, we run 2 rounds
of activations. In round 1, activate all the coy nodes on the
coy prefix of the path πci (nodes PCci in Lemma V.1), starting
with the node at the edge of the stable tree and moving toward
ci, and have them announce, perhaps spuriously, their suffix
of πci . By ci’s turn, πci will be available, so it or another
coy-next-hop path will get selected. Round 2 activates all the
same nodes in the same order, and have them send spurious
withdrawals. With no coy-next-hop paths available after that,
ci will change its path selection. Repeat this sequence for all
the cis in a loop. Each coy node will keep changing its route,
allowing it to keep sending spurious updates.

By condition iii, any stable node v with πv = ε cannot have
any paths in Pv available from its stable neighbors. Thus, it
may only receive announcements of allowed paths from coy
nodes. By having these remaining stable nodes activate after
the second round of each ci step above, they will never have
any allowed paths available to them.

For the other direction, we need another technical lemma:

Lemma V.3. Let an oscillating node c ∈ V in an instance
of DPVP select path P at some point during the oscillation.
If the path P contains node s ∈ V and the node s does not
oscillate, then node s must permanently select path P [s, 0].

Proof: Oscillating nodes only announce recently available
paths. Since s will not be announcing spurious updates for
longer than τ after it stops oscillating, any stale path containing
node s and a suffix other than P [s, 0] will not be announced
anywhere for longer than iτ time after s converges and enough
fair activation phases pass.

Lemma V.4. If a DPVP instance oscillates, it has a CoyOTE.

Proof: Given the oscillating instance I and the corre-
sponding activation sequence, we construct a CoyOTE (C,Π).

Let SI be the non-oscillating nodes and CI the oscillating
nodes in the instance I . Any non-oscillating node v ∈ SI
which permanently chooses path (v, u)P learned from an
oscillating node u ∈ CI can be made to oscillate by changing
the activation sequence. Add an activation of the edge (u, v)
with a spurious withdrawal, and a second activation of the
edge with a (possibly spurious) announcement of path P . We
keep adding nodes to CI until no more nodes can be made to
oscillate. We can set Π so that (CI ,Π) is a CoyOTE. For non-
oscillating nodes v ∈ SI , we set πv to be the path permanently
chosen. For oscillating nodes v ∈ CI , we set πv be the highest
ranked of the path(s) that v chooses in the oscillation.

(CI ,Π) can be seen to be a CoyOTE: The origin is stable
and CI is non-empty, yielding conditions i and ii. After the



8

above iteration, every node s remaining in SI has a path πs

that is either ε or was learned from another node in SI . Any
path from s to a next hop also in SI is continually available,
so s chooses the stable path bestStable(s, C,Π) which must
be available, yielding condition iii. If, for v ∈ CI , the highest
ranked path chosen infinitely often in the oscillation has a
stable next hop, then, after the next hop stabilizes and τ time
passes, that path must indeed become permanently available,
which contradicts v continuing to oscillate, yielding condition
iv. Lastly, Lemma V.3 covers condition v.

VI. PRACTICAL ALGORITHM FOR SAFETY VERIFICATION

We now consider the algorithmic question of checking
safety under DPVP. We give an algorithm, “DeCoy”, that
greedily shrinks the candidate coy set, and reaches an empty
coy set if and only if there is no CoyOTE. This algorithm is
always correct, but its runtime depends on the local policies of
the nodes. After analyzing the algorithm in general, we explore
the large class of policies which enable it to run efficiently,
which turns out to cover most BGP policies used in practice.

A. The “DeCoy” safety verification algorithm

The DeCoy algorithm greedily builds up the candidate stable
set, starting with just the destination4:

initialize S = {0}∪{nodes not connected to 0}; C = V \S
while there exists a v ∈ C such that:

1) v has a neighbor in S, and
2) there is no path P ∈ Pv which is both:

a) preferred by v over bestStable(v, C,Π), and
b) suffix-consistent with (S,Π)

do
move v from C to S; set πv = bestStable(v, C,Π)
for any v ∈ C with no paths in Pv that are suffix-
consistent with (S,Π) do

move v from C to S; leave πv = ε
if C is empty then return “safe”
else return “unsafe: (C,Π) is a CoyOTE”

Theorem VI.1. A DPVP instance is safe if and only if DeCoy
terminates with all nodes in the stable set S.

The proof of Theorem VI.1 appears in the long version [12].
The efficiency of the DeCoy algorithm turns out to be

intricately linked to the tractability of optimizing over policies,
including both router preferences (embodying, e.g., BGP local
preference settings), and allowed path sets (embodying, e.g.,
filtering rules). We first define the fully general requirements
on efficient policies that allow DeCoy to run efficiently, and
then, in Section VI-B, discuss the wide range of realistic
policies that fit into this framework.

Definition VI.1. We say that a node v implements optimizable
policy if v’s permitted path set Pv and ranking function λv

4And possibly some nodes that are permanently disconnected from the
destination, which are stable and retain the empty route.

allow a polynomial time algorithm which, given a suffix-
consistent stable tree (S,Π), can find the highest-ranked suffix-
consistent path P ∈ Pv .

Theorem VI.2. If all nodes implement optimizable policy,
DeCoy runs in polynomial time.

Proof sketch: We can search through the O(n) paths in
stableChoices(v, C,Π) by brute force, to find the bestStable
path. The optimizable policy constraint then lets us check
whether a non-stable path is preferred over bestStable for the
while loop. The for loop condition is checked by seeing if
the optimization returns the empty path as the best suffix-
consistent allowed path. The other steps are always efficient.

Effectively, this states that a node’s policy should let it
efficiently figure out “what route do I most prefer, given what
the rest of the world has permitted me?” We assert that a policy
which does not allow a tractable answer to this question is
somewhat strange. In a heuristic sense, that would entail the
router “not knowing what is best for it”, even when shown the
full network structure and available paths, and instead awaiting
whatever the notoriously unpredictable network dynamics give
it, with no easily-computable goal in mind.

B. Verifying Safety in Practice

The BGP policies actually used by ASes are varied and
complex, but fairly well understood [21]. Generally, a router
filters some policies before importing, selects the best im-
portable route under its local ranking, and exports it to some
subset of its neighbors.

For the purposes of DPVP analysis, we distinguish two
levels of policies: (1) preference policies prefer some routes
less than others, but don’t preclude spurious announcements
involving a lower ranked route (modeled with the λ local rank-
ing function); and (2) filtering policies definitively remove a
route from consideration, precluding even spurious updates
involving that route (modeled with the permitted paths set Pv).
BGP import/export constraints will often be filtering policies.
But BGP policies often thought of as filters, like “avoid paths
through country X”, are often actually just a depreferencing
step in the preference function, without any clear mechanism
forbidding spurious announcements of such a route.

Here, we argue about policies by example, but prefer that the
reader remains agnostic about which kinds of policies should
be modeled as filters, and which as preferences. Given a policy
constraint, the decision of whether to allow spurious violations
of it depends on the details of the mechanisms generating
spurious updates or on the algorithm executor’s decision to
seek a more conservative/robust notion of safety: safety under
a wider range of possible (mis)behaviors. Changing a filtering
policy to a preference policy can only allow more spurious
update options, yielding a more robust “safety” notion, which
we think natural to seek. Notably, in all the cases we consider
below, moving policies we consider as filtering policies to the
preference stage would keep all the policies optimizable.



9

We now outline some examples of a broad range of common
policies that turn out to be optimizable. A filtering policy
requires a router to not route at all rather than use a particular
route, presumably due to a strong incentive, such as an
economic or security constraint. We admit as “typical filtering
policies” any filter of paths that are:
(a) learned from neighbor u and/or announced to neighbor v
(b) violating Gao-Rexford constraints
(c) leading to a blacklisted destination
Rule (a) is quite general; (b) is a special case of (a).

We allow a very broad variety of “typical preference
policies”. For instance, we could allow policies as rich as:

1) penalize paths passing through country X by px, and
through countries Y and Z, by pyz; then

2) prefer customer routes; then
3) pick a route using the shortest hop path;
4) of those routes, pick a route that that minimizes some

linear combination of:
a) number of “undesirable” nodes it passes (e.g. low-

performing nodes)
b) average data-plane packet loss rate over the path;

5) then pick the one w/the lexicographically 1st next hop.
We can also allow any subset of such rules, most rearrange-

ments of such rules, and a variety of rules not mentioned here.
Formally, we admit any preference policy that splits paths
into several categories based on edge and node sets they can
use, and, within each category, allows arbitrary optimization
isomorphic to “stratified shortest paths” (the latter itself a very
general policy class, discussed in [22]). The formal definition
and proofs for this wide class of policies is deferred to the
full version of the paper [12]. To the best of our knowledge,
the only vaguely realistic preference policies outside this class
require the router to “care” about fine-grained distinctions
among a superpolynomial number of path categories.

Theorem VI.3. Any combination of “typical” filtering and
preference policy classes above constitutes optimizable policy.

Proof: Proof sketch The algorithm rests on three points:
• the “typical” policy classes above can be optimized by an

augmented Bellman-Ford algorithm, executed separately
for each “category” in the preference policy;

• the next- and previous-hop filtering requires maintaining
multiple Bellman-Ford “wavefronts” at each node, for
each relevant neighbor pair

• With relevant integrality and range constraints, a con-
stant number of “levels” of lexicographically combined
shortest-path-like preferences can be combined into a
single objective function.

The formal policy class definitions, algorithms, and proof are
in the full version [12].

VII. CONCLUSION

In this paper we explored BGP safety. We observed that
a number of BGP implementation features cause spurious
announcements — temporary announcements of routes that are

not the most preferred ones. In order to study the properties
of BGP in the presence of these spurious announcements, we
introduced DPVP, a new dynamic model of BGP. This model
proved to be a powerful tool with favorable properties that
allowed us to prove the necessary and sufficient conditions of
convergence in that model, a question that remained elusive
with earlier models of BGP. We also introduced the DeCoy
algorithm, an efficient polynomial time algorithm that verifies
BGP safety for a rich group of policies that are representative
of the configurations used in practice. This also resolves an im-
portant question that is of practical interest to both researchers
and network operators who need to verify the correctness of
their configurations. Development of a distributed privacy-
preserving version of the DeCoy algorithm that does not
require autonomous systems to reveal their routing policies
is the subject of our ongoing investigation.

REFERENCES

[1] J. W. Stewart, III, BGP4: Inter-Domain Routing in the Internet.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[2] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 681–692, 2001.

[3] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” in Proc. of INFOCOM, 2009, pp. 549–557.

[4] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2, pp.
232–243, 2002.

[5] L. Gao, T. Griffin, and J. Rexford, “Inherently safe backup routing with
BGP,” in Proc. of INFOCOM, 2001, pp. 547–556.

[6] L. Cittadini, G. D. Battista, M. Rimondini, and S. Vissicchio, “Wheel
+ ring = reel: The impact of route filtering on the stability of policy
routing,” in Proc. of ICNP, 2009, pp. 274–283.

[7] T. G. Griffin, A. D. Jaggard, and V. Ramachandran, “Design principles of
policy languages for path vector protocols,” in Proc. of ACM SIGCOMM,
2003, pp. 61–72.

[8] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of autonomy
for the expressiveness of policy routing,” in SIGCOMM 2005, pp. 25–36.

[9] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path-
vector protocols,” in Proc. of ICNP, 1999, pp. 21–30.

[10] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap damping,”
1998, IETF RFC 2349.

[11] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),”
2006, IETF RFC 4271.

[12] M. Suchara, A. Fabrikant, and J. Rexford, “BGP safety with spurious
updates,” CS Dept, Princeton, Tech. Rep. TR-881-10, July 2010.

[13] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, 2005.

[14] A. Fabrikant and C. H. Papadimitriou, “The complexity of game
dynamics: BGP oscillations, sink equilibria, and beyond,” in Proc. of
SODA, 2008, pp. 844–853.

[15] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz, “Route flap
damping exacerbates Internet routing convergence,” in Proc. of ACM
SIGCOMM, 2002, pp. 221–233.

[16] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
parallelism to scale software routers,” in Proc. of SOSP, 2009.

[17] “Router reliability research (R3),” 2010, http://r3.cis.upenn.edu/.
[18] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence

properties,” in Proc. of ACM SIGCOMM, 1999, pp. 277–288.
[19] D. Obradovic, “Real-time model and convergence time of BGP,” in Proc.

of INFOCOM, 2002, pp. 893–901.
[20] A. Fabrikant, U. Syed, and J. Rexford, “There’s something about MRAI:

Timing diversity exponentially worsens BGP convergence,” 2010, in
submission.

[21] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,” IEEE
Network Magazine, vol. 19, no. 6, pp. 5–11, 2005.

[22] T. G. Griffin, “The stratified shortest-paths problem,” in Proc. COM-
SNETS, 2010, pp. 1–10.


