
The Complexity of Pure Nash Equilibria

[Extended Abstract]

Alex Fabrikant
∗

Computer Science Division
UC Berkeley, CA 94720

alexf@cs.berkeley.edu

Christos Papadimitriou
†

Computer Science Division
UC Berkeley, CA 94720

christos@cs.berkeley.edu

Kunal Talwar
‡

Computer Science Division
UC Berkeley, CA 94720

kunal@cs.berkeley.edu

ABSTRACT
We investigate from the computational viewpoint multi-player
games that are guaranteed to have pure Nash equilibria.
We focus on congestion games, and show that a pure Nash
equilibrium can be computed in polynomial time in the sym-
metric network case, while the problem is PLS-complete in
general. We discuss implications to non-atomic congestion
games, and we explore the scope of the potential function
method for proving existence of pure Nash equilibria.

Categories and Subject Descriptors
F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes—Reducibility and completeness; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms
Theory

Keywords
Games, pure Nash equilibria, complexity, congestion games,
PLS, PLS-completeness, local search

1. INTRODUCTION
As the ice separating Game Theory from Theoretical Com-

puter Science is melting, some of the fundamental results
in Game Theory come under increased complexity-theoretic
scrutiny — chief among them the important classical ex-
istence theorem due to Nash [16]. Nash’s proof that every
game has a randomized Nash equilibrium is non-constructive

∗Supported by the Fannie and John Hertz Foundation
†Supported by an NSF ITR grant.
‡Research partially supported by the NSF via grants CCR-
0121555, CCR-0105533 and ITR grant 331494.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

in the polynomial sense. The problem of computing a ran-
domized Nash equilibrium is among the “inefficient proofs
of existence” identified in [19], lying, together with Brouwer
fixed points, in the class PPAD (for “polynomial parity argu-
ment, directed version”) — but, unlike Brouwer’s problem,
Nash’s is not known to be PPAD-complete. The two-person
case is known to be delightfully combinatorial, but again
with an exponential catch (see the exposition in [26] and
the recent exponential construction [23]). We now have a
clever algorithm for finding approximate Nash equilibria in
sub-exponential time [13], while it is known that any twist of
the problem quickly makes it NP-hard (see [2] for a unifying
proof).
Given the apparent difficulty of finding a randomized Nash

equilibrium (let alone the criticism that the concept of ran-
domized strategies has attracted within Game Theory), it
is natural to ask what kinds of games possess a pure Nash
equilibrium.
This is the question that motivates the present work: Which

games have pure Nash equilibria? And under what circum-
stances can we find such in polynomial time? We immedi-
ately note that, for such a problem to be computationally
meaningful, the number of players should be large, and the
payoff table must be given in some implicit way (because
otherwise exhaustive search of the entries of the payoff ta-
ble does the trick).
There is a famous and well-studied class of games (and,

in fact, one with obvious affinity to networks) that is guar-
anteed to have pure Nash equilibria: the congestion games.
Figure 1 shows a congestion game in the setting of networks:
three players want to move one unit of flow between desig-
nated endpoints of a network by choosing one path each.
The cost of each combination of path choices to each player

S T

2/3/5

1/2/8

2/3/6

1/5/6

Y

X

A,B,C

A,B,C
4/6/7

Figure 1: A network congestion game: three players
are picking paths from S to T . Each edge is labeled
with per-player delays when used by 1, 2, and 3
players.

604

is calculated by adding the delays of the edges of the path
chosen, where the delay of an edge depends on the number
of players using this edge (given here as an explicit func-
tion). In the present example, if Player A chooses the path
SXY T , B chooses SXT , and C chooses SY T , then the costs
to the players are 9, 5, and 9 respectively. This is not a Nash
equilibrium, because C can defect profitably to path SXT .
In a classical paper [20], Rosenthal proves that, in any

such game, “the Nash dynamics converges” (i.e., the di-
rected graph with action combinations as nodes and payoff-
improving defections by individual players as edges is acyclic),
and hence the game has pure Nash equilibria (the sinks of
the graph). The proof, outlined in Section 2, is based on a
simple potential function. This existence theorem, however,
again leaves open the question, does a polynomial-time algo-
rithm for finding pure Nash equilibria in congestion games
exist?
We show that the answer is positive when all players have

the same origin and destination (the so-called symmetric
case, Theorem 2); a pure Nash equilibrium is found by
computing the optimum of Rosenthal’s potential function,
through a reduction to min-cost flow. However, we show
(Theorem 3) that computing a pure Nash equilibrium in the
general network case is PLS-complete [10], which means in-
tuitively “as hard to compute as any object whose existence
is guaranteed by a potential function” (see Section 2 for the
precise definition). Our proof has as corollary the existence
of examples with exponentially long shortest paths, as well
as the PSPACE-completeness of the problem of finding a
Nash equilibrium reachable from a specified state. The com-
pleteness proof is complicated, as it requires the reworking
of the reduction, due to [24], to the problem of finding local
optima of weighted MAX2SAT instances (possibly the most
complex reduction in the literature, if one excludes PCP).
When congestion games are posed in the abstract (in terms
of sets of resources instead of paths in a network, this being
the original formulation), Nash equilibria are PLS-complete
to find even in the symmetric case.
Our algorithm for pure Nash equilibria has an application

to the non-atomic congestion games studied by Roughgar-
den and Tardos [21], in which delays are continuous func-
tions. We show that, under the necessary smoothness as-
sumptions, we can approximate the Nash equilibria of such
games in strongly polynomial time (Theorem 4).
What other games can be shown to have Nash equilib-

ria by potential functions? Monderer and Shapley [15] have
provided an early and devastating answer: only for (incon-
sequential generalizations of) congestion games can we have
a function φ(s) of the state such that for each defection by
a player from s to s′ the improvement to the payoff of this
player is precisely φ(s′)− φ(s).
Consider, however, the party affiliation game: n players

have two actions (“parties”) {−1, 1} to choose from and the
payoff for i of choices (s1, . . . , sn) is sgn(

P
j si · sj · wij),

where wij are given symmetric integer weights (positive or
negative). Intuitively, people are happy when they are in
the same party as their friends, and at different parties than
their enemies, and the weights capture the warmth of the
relationship between two people. It is easy to see that in
this game the Nash dynamics converges, and the function
φ(s) =

P
i,j si · sj · wij can serve as a potential function in

a sense. And still, this game is definitely not a congestion
game (it is easy to see that it is a local optimality version

of the max cut problem, and related to the convergence of
Hopfield neural networks), in apparent contradiction with
the negative result of [15]. What is going on?
There is a weakness in the negative result of [15]: the re-

quirement that the two differences be the same is far too
strict; they need only have the same sign for φ to be a valid
potential function for the purposes of local search; we will
refer to this as a general potential function. We show (The-
orem 6) that, under the relaxed definition, the space of “po-
tential games” is much richer, essentially encompassing all
of the class PLS: any problem in PLS can be coached as
a game whose pure equilibria are guaranteed to exist by a
potential function argument.
Finally, in Section 5 we discuss several open problems,

the most general and important of which is understanding
better the nature of games that are guaranteed to have pure
Nash equilibria; we also review some other known classes of
such games, proving more general results in some cases.

2. DEFINITIONS AND NOTATION

Games. A game with n ≥ 2 players is a finite set of actions
Si for each player, and a payoff function ui for each player
mapping S1 × · · · × Sn to the integers. The elements of
S1 × · · · × Sn will be called action combinations or states.
A (pure) Nash equilibrium is a state s = (s1, . . . , sn) such
that for each i ui(s1, . . . , si, . . . , sn) ≥ ui(s1, . . . , s

′
i, . . . , sn)

for any s′i ∈ Si. In general a game may not have pure Nash
equilibria. (However, Nash proved [16] that if we extend the
game to include as strategies for i all possible distributions
on Si, with the obvious extension of the ui’s to capture
expectation, then an equilibrium is guaranteed to exist.)
A game is symmetric if all Si’s are the same, and all ui’s,

considered as a function of the choices of the other players,
are identical symmetric functions of n− 1 variables.
Consider a graph with node set S1 × · · ·×Sn and an edge

(s, s′) whenever s and s′ differ only in one component, say
the ith, and ui(s

′) > ui(s). If this graph is acyclic then we
say that, for this game, the Nash dynamics converges.

Proposition 1. If the Nash dynamics converges, then
there is a pure Nash equilibrium.

Sketch: The sinks of the graph are precisely the Nash equi-
libria of the game.

Congestion Games. We shall consider games in which
the ui’s are given implicitly in terms of efficient algorithms
computing the utilities based on the input and the state.
For example, in a congestion game the input is a set of n
players, a finite set E of resources, and the action sets are
Si ⊆ 2E ; we are also given the delay function d mapping
E × {1, . . . , n} to the integers. de(j) is nondecreasing in j.
The payoffs are computed as follows. Let s = (s1, . . . , sn)
be a state, and let fs(e) = |{i : e ∈ si}|. Then ci(s) =
−ui(s) =

P
e∈si

de(fs(e)). Intuitively, each player chooses

a set of resources (from among the sets available to her),
and to compute the cost incurred by i (the negative of her
payoff) we add the delay of each resource used by i, where
the delay of a resource e depends on the congestion fs(e),
the total number of players using e.
In a network congestion game the families of sets Si are

presented implicitly as paths in a network. We are given a
network (V,E), two nodes ai, bi ∈ V for each player i and

605

again a delay function with the edges playing the role of the
resources. The subset of E available as actions to the player
i is the set of all paths from ai to bi. We shall assume the
network is directed.

Theorem 1 (Rosenthal, [20]). Every congestion game
has a pure Nash equilibrium.

Proof. The potential function establishing the result is

φ(s) =
P

e

Pfs(e)
j=1 de(j). For the proof, reverse the sum-

mations: φ(s) =
Pn

i=1

P
e∈si

de(f
≤i
s (e)), where by f≤i

s (e))
we denote the total number of players j ≤ i using e. Sup-
pose now that (s, s′) is an improving defection, and suppose
(without loss of generality, since players were ordered arbi-
trarily) that the defecting player is n. Then:

φ(s′)− φ(s) =
X
e∈si

de(f
≤n
s′ (e))−

X
e∈si

de(f
≤n
s (e))

=
X
e∈si

de(fs′(e))−
X
e∈si

de(fs(e))

= ci(s
′)− ci(s)

Hence, φ decreases along all edges of the Nash dynamics
graph, and hence the Nash dynamics converges.

Notice that φ(s) has no intuitive interpretation as “social
welfare” or as any related notion; it just accurately absorbs
progress, as a potential function should.

PLS. A problem in PLS [10] is given by (a) a set of instances
I = Σ∗; (b) for each instance x ∈ I a set of feasible solutions
Fx ⊆ Σp(|x|); (c) a polynomial oracle c which, given x ∈ I

and s ∈ Σp(|x|) determines whether s ∈ Fx and, if so, com-
putes an integer c(x, s) — the cost of s (to simplify matters
we assume minimization); and (d) for each x ∈ I, s ∈ Fx

a neighborhood Nx(s) ⊆ Fx; and a polynomial function g
which, on input x ∈ I and s ∈ Fx returns an s′ ∈ Nx(s)
with c(s′) < c(s), or, if no such s′ exists, returns “no”. An
instance of the PLS problem is this: “Given x ∈ I , find a
local optimum, that is, an s ∈ Fx such that g(s) = “no”.”
Since the introduction of this class in [10], many local

search problems were shown PLS-complete, including weighted
versions of satisfiability, aspects of graph bisection, and the
traveling salesman problem [12, 24, 18]. PLS-completeness
results are proved in terms of PLS reductions, providing also
a mapping from local optima of the target problem to lo-
cal optima of the original. Let us immediately note that,
by the proof of Rosenthal’s Theorem above, finding a pure
Nash equilibrium for a congestion game is in PLS, as it is
equivalent to finding a local optimum of φ, where the fea-
sible solutions are all states. Notice that this does not im-
ply a polynomial algorithm, since improvements of φ can
be small and exponentially many. It is shown in [17] that
problems in PLS have a PTAS (by appropriately rounding
the potential function, and re-rounding after enough steps
if necessary to retain accuracy, the improvements become
coarse enough, and thus guaranteed to end before too long).
However, this does not immediately imply a PTAS for find-
ing ε-Nash equilibria, as approximation of the potential does
not imply approximation of the individual player’s cost.
In the next section we characterize the complexity of com-

puting pure Nash equilibria in congestion games.

3. THE COMPLEXITY OF CONGESTION
GAMES

The Algorithm
A network potential game is symmetric if all players have
the same endpoints a and b (and thus they all have the same
set of paths/strategies).

Theorem 2. There is a polynomial algorithm for finding
a pure Nash equilibrium in symmetric network congestion
games.

Proof. The algorithm computes the optimum of φ(s);
since the optimum is also a local optimum, the resulting
state ŝ is a pure Nash equilibrium.
The algorithm is a reduction to min-cost flow. Given the

network N = (V,E, a, b) and the delay functions de, we re-
place in N each edge e with n parallel edges between the
same nodes, each with capacity 1, and with costs de(1), . . . , de(n).
It is easy to see that any (integer) min-cost flow in the new
network is a state of the game that minimizes φ(s).

As we shall see soon (Theorem 4) this simple algorithmic
idea has implications for non-atomic congestion games.

PLS-completeness
In contrast, all three other cases of congestion games are
PLS-complete:

Theorem 3. It is PLS-complete to find a pure Nash equi-
librium in network congestion games of the following sorts:

(i) General congestion games.

(ii) Symmetric congestion games.

(iii) Asymmetric network congestion games.

Sketch: We explain the simple reduction for (i) because it is
the basic framework for the much harder proof for case (iii).
We reduce from the following problem: given an instance of
not-all-equal-3SAT with weights on its clauses and contain-
ing positive literals only, find a truth assignment satisfying
clauses whose total weight cannot be improved by flipping
a variable. Call this problem posnae3flip; it is known to
be PLS-complete [24].
Given an instance of posnae3flip, we construct a con-

gestion game as follows. For each 3-clause c of weight w we
have two resources ec and e

′
c, with delay that is 0 if there are

two or fewer players, and w otherwise. The players are vari-
ables. Player x has two strategies: one strategy contains all
ec’s for clauses that contain x, and another that contains all
e′c’s for the same clauses. Smaller clauses are implemented
similarly. It is not hard to see that any Nash equilibrium of
the congestion game is a local optimum of the posnae3flip

instance.
The proof of (ii) is by a reduction of the non-symmetric

case to the symmetric case. Given a congestion game with
action sets S1, . . . , Sn, we construct the following symmetric
game. Let S′

i = {s∪ {ei} : s ∈ Si} for each i, where the ei’s
are distinct new resources with delay function dei(j) = 0 if
j = 1, and dei(j) =M , a very large number, if j ≥ 2. Con-
sider the symmetric game with the same edges and common

606

strategy set
S

i S
′
i. It is easy to see that any equilibrium

of this game will have one player using a strategy from S′
i,

and hence will correspond to (by omitting the ei’s) a specific
equilibrium of the original game.
We only present an outline of (iii) here. In order to make

the idea in (i) work in a concrete network, we need several
modifications and extensions of the original construction
of [24]. We need three new kinds of clauses besides pos-

nae3flip to replace clusters of posnae3flip clauses of [24]
that are incompatible with our proof: a single clause over
m variables which is satisfied if exactly one of its arguments
is true and whose penalty scales linearly with the number
of extraneous true arguments; 2SAT clauses with positive
literals; and 2SAT clauses with negative literals. We call
this problem extended posnae3flip, or xpnae3flip. For
each such instance we have “network gadgets” for variables
and clauses of each type, and we can put them together in a
network congestion game where the players are the variables
and any truth assignment can be simulated by a state of the
game.
The hard part is proving that all Nash equilibria of the

resulting game are of this “standard” form and not hybrids
that correspond to no truth assignment. The property of the
xpnae3flip instance needed for our proof to go through can
be stated in terms of a weighted directed graph, called the
witness graph of the instance, which we define next.
Consider an instance F of xpnae3flip with a set of vari-

ables X and a set of clauses C, where C = C0∪C1∪C2∪C′
2∪

Cs, with C0 being the 2- or 3-literal NAE clauses, C1 being
{c1}, where c1 is the single “one-out-of-m” clause over some
set of variables X1, C2 and C′

2 — the positive and negative
2-SAT clauses, and Cs — all the other clauses, all of which
are single-variable (i.e. of form x �= 0 or x �= 1). Define the
set of nodes V to be V = (X×{s, t})∪ (C0 ×{0, 1})∪ (C1 ×
{X1 ∪ {1}}) ∪ C2 ∪ C′

2.
Suppose now that, for every variable x ∈ X, we arrange

the nodes corresponding to the clauses in which x appears in
two ordered lists. The list L1(x) starts with (c1, 1) if x ∈ X1,
and also contains (c, 1) for all clauses c ∈ C0 in which x ap-
pears, and c for each clause c in C2 in which x appears. The
list L0(x) starts with (c1, x) if x ∈ X1, and also contains
(c, 0) for all clauses c ∈ C0 in which x appears, and c for each
clause c in C′

2 in which x appears. Suppose then that we
are given, besides F , this set of 2|X| lists, call them L. The
witness graph WG(F,L) is a directed graph (V,EL), whose
edges are defined as follows: for every variable x, if L1(x)
is (v1

1 , . . . , v
1
k1
) and L0(x) is (v

0
1 , . . . , v

1
k0
), then the witness

graph contains the edges (xs, v
1
1), (v

1
1 , v

1
2), . . . , (v

1
k1 , xt), and

(xs, v
0
1), (v

0
1 , v

0
2), . . . , (v

0
k1 , xt). The paths from xs to xt con-

sisting of these edges are called the two standard paths of
variable x. This definition references some edges multiple
times, but we are not defining a multi-graph; only one edge
between any 2 nodes is added, independently of the number
of times it’s referenced by the above expression. In partic-
ular, there are multiple references to edges connecting two
C0 clauses which share 2 variables (or, inconsequentially,
identical clauses in any class), since they appear in the least
for each repeated variable. Note that Cs clauses are not
involved in the construction of the witness.
Consider now an instance F of xpnae3flip, a set of lists

L, and the witness graph (V,EL) with non-negative inte-
ger weights y on EL. We say that the weighted witness
graph (V,EL, y) is valid for F if the following holds: for

any variable x ∈ X, the two standard paths for x have the
same length (under y), and are strictly the shortest paths
from xs to xt. The witnessed xpnae3flip problem is the
following: given an instance F of xpnae3flip, and a valid
weighted witness graph for F , find a truth assignment whose
total weight is maximal.
The proof now follows from two results:

Lemma 1. There is a PLS reduction from witnessed xp-

nae3flip to network congestion game.

Sketch: The construction of the network uses the witness
graph as a blueprint. Each clause-related node is expanded
to an edge between two nodes, with all the incoming edges
attached to its source, and all the outgoing edges attached
to its destination. The weights (delay functions) of these
“clause edges” are chosen to reflect the exact penalties1 for
more than 1 variable being true in the case of C1, and, in case
of the other clauses, the penalty for the clause being violated
by all variables being equal. The delays of the other edges,
those specific to the variables, are set to be incomparably
larger than the clause weights at the “proper load”, and
to be incomparably larger than even that if they are used
by too many variables (2 in most cases, 3 if the edge is in
the standard path of 2 variables). This ensures that the
standard paths are the only ones taken by Nash defectors,
and thus there are no spurious Nash equilibria. Any clauses
containing 2 variables and a literal are forced to be in C2 or
C′

2, and any clauses containing just 1 variable and a literal
are accommodated by charging their weight to the penalty
of an arbitrary private edge of that variable (chosen from
L0(x) or L1(x) depending on the literal).

Lemma 2. witnessed xpnae3flip is PLS-complete.

Sketch: See the appendix.

This completes our outline of the proof of the theorem.

Corollary 1. For the three cases in the theorem, (a)
there are examples of game instances states from which all
Nash equilibria/sinks are exponentially far in the Nash dy-
namics graph, and (b) the problem, given a state s, find a
Nash equilibrium reachable from s is PSPACE-complete.

Sketch: Our reductions preserve these properties of pos-

nae3flip [24].

The Non-atomic Case
The non-atomic congestion game, studied extensively and
productively in the work of Roughgarden and Tardos [22], is
the limit of the congestion game as n, the number of players,
goes to infinity. We are given a network (V,E) and endpoint
pairs (ai, bi), i = 1, . . . , k as well as flow requirements ri, i =
1, . . . , k, rational numbers adding to 1; also for each edge
e ∈ E a non-decreasing delay function de : [0, 1] �→ �+.
For a path p and flow f , define the delay of the path dp(f)
to be

P
e∈p de(f). We wish to find a k-commodity flow f

satisfying the flow requirements that is a Nash equilibrium,
that is, for all pairs of endpoints ai, bi, any flow path between

1It is here that the symmetry of the penalty function for C1

clauses is needed — the penalty has to be independent of
which variables are true

607

ai and bi (i.e. a path with nonzero ai-bi flow) has a delay
at no larger than any other ai-bi path p

′.
We note that, as observed in [1, 3, 22] this problem can be

rephrased as a convex optimization problem and hence can
be solved by the Ellipsoid method. As pointed out by Lisa
Fleischer [5], an approximation scheme for the above convex
optimization problem also follows from combining the tech-
niques in [9, 8, 11], though that does not necessarily give an
approximate Nash Equilibrium (see definition below). Our
algorithm is also combinatorial and runs in strongly polyno-
mial time. We make the following assumption on the latency
functions de.

Lipschitz assumption: There exists a constant K such
that for edges e, for all 0 ≤ x < y ≤ 1, |de(y) − de(x)| ≤
K|y − x|.
Approximate Nash Equilibria: We say a state s =
(s1, . . . , sk) is an ε-approximate Nash equilibrium if for ev-
ery i, every flow path p carrying at least ε units of flow,
and every ai-bi path p′, the delay dp(f) is no larger than
dp′(f) − ε. In words, no player has a non-negligible defec-
tion that decreases her delay by more than ε.
We outline an algorithm for computing an ε-approximate

Nash equilibrium in any congestion game. With some fore-
sight, we set δ = ε

4mK
(where K is an upper bound on

the lipschitz constants of the latency functions above, and
m = |E|).
Recall that a Nash equilibrium of the non-atomic conges-

tion game is a flow that optimizes the potential function

φ(f) =
P

e φf (fe), where φe(fe) =
R fe

0
de(t)dt. Taking a

cue from our algorithm for the symmetric atomic case, we
define an instance of the multicommdity min cost flow prob-
lem. We replace edge e by a sequence of parallel arcs each of
capacity δ, where the cost per unit flow of the ith arc is set

to φ(iδ)−φ((i−1)δ)
δ

=

R iδ
(i−1)δ de(t)dt

δ
. Since the delay function

is increasing, so are the costs of successive arcs correspond-
ing to a particular edge. We say a flow f on this instance
is canonical if for every edge in the original graph, f uses
the first i arcs to their capacity, and does not use arcs i+ 2
onwards. Clearly there is always a canonical optimum to
the min cost flow instance. Moreover, there is a one-to-
one correspondence between flows in the original graph and
canonical flows in min cost flow instance.
Consider an optimal canonical solution to the multicom-

modity min cost flow instance. This defines a flow f on the
original graph. Consider a rounded down version f of this
flow, where fe = δ� fe

δ
�. Note that f does not necessarily

satisfy flow conservation, and hence need not be a valid flow.
Since f is an “integral” (pseudo)flow, the cost of this flow

is exactly equal to the potential function value evaluated at
this flow. Recall that f optimizes the cost function C(f) =P

e Ce(fe), where Ce(fe) is a piecewise linear approximation

of φe(f) =
R fe

0
de(t)dt. Thus Ce(iδ) = φe(iδ) for any integer

i. Now, for any edge e,

|φe(fe)− Ce(fe)| =
��(φe(fe)− φe(fe))− (Ce(fe)− Ce(fe))

��

=

������
Z fe

fe

de(t)dt−
(fe − fe)

R fe+δ

fe
de(t)dt

δ

������

=

Z fe

fe

������de(t)−
0
@
R fe+δ

fe
de(t)dt

δ

1
A
������dt

≤
Z fe

fe

��de(fe + δ)− de(f)
��dt

≤ δ ·Kδ = Kδ2

where in the first inequality, we have used the fact that for
any function f and any point t, |f(t)−fav| is at most |fmax−
fmin|. The second inequality uses the lipschitz condition.

Thus |φ(f) − C(f)| ≤ Kmδ2 ≤ ε2

16mK
. Thus the function

C(f) approximates the potential function φ(f) within an

additive error of ε2

16mK
.

Now suppose that the optimal min cost flow f is not an
ε-approximate Nash equilibrium. Then there is an i, a flow
path p and a path p′ such that dp(f) > dp′(f)−ε. Rerouting
ε/2mK units of flow from p to p′ then improves φ by ε2

4mK
.

This however implies that C can be improved by at least
ε2

8mK
, contradicting the optimality of f . Thus we have es-

tablished that any flow f optimizing C corresponds to an ε-
approximate Nash equilirium of the congestion game. More-
over, a near optimal min cost flow is still an ε-approximate
Nash Equilibria.
What remains then is to compute the min cost flow f .

This however is a linear programming problem, and also
has strongly polynomial time combinatorial algorithms (see
e.g. [9, 7]). Thus we have shown that

Theorem 4. Given a non-atomic congestion game with
delay functions satisfying the Lipshitz assumption with con-
stant C, an ε-approximate Nash equilibrium can be computed
in time poly(m,C, 1

ε
).

4. GENERAL POTENTIAL GAMES
We have seen that potential functions are valuable for

proving the existence of pure Nash equilibria. What is the
precise scope of this method?
Call a game an exact potential game if there is a function

φ such that for any edge of the Nash dynamics graph (s, s′)
with defector i we have φ(s′) − φ(s) = ui(s

′) − ui(s). A
result of Monderer and Shapley [15] establishes the following
disappointing fact (as restated in [27]):

Theorem 5 ([15]). Any exact potential game is iso-
morphic to a congestion game.

Hence, the applicability of the potential function method
is limited essentially to Rosenthal’s theorem.
Recall however the party affiliation game from the intro-

duction. Existence of Nash equilibria was proved by a po-
tential function — albeit not an exact one. For any edge
(s, s′) of the Nash dynamics graph with defector i we have
ui(s

′)− ui(s) = 2, whereas φ(s′)− φ(s) can be any positive
number. The potential function argument for convergence
requires only that sgn(φ(s′) − φ(s)) = sgn(ui(s

′) − ui(s)).

608

Let general potential games be games that have general po-
tential functions, i.e. ones satisfying this inequality. The
question now becomes, how rich is this class of games? We
note immediately that if a family of games has polynomially
computable general potentials, then the problem of finding
a pure Nash equilibrium is in PLS. Our next result is a
converse statement: the class of general potential games es-
sentially comprises all of PLS.

Theorem 6. For any problem in PLS with instances I
there is a family of general potential games indexed by I such
that, for problem instance x, the game Gx has poly(|x|) play-
ers each with strategy set that includes the alphabet Σ, and
such that the set of pure Nash equilibria of Gx is precisely
the set of local optima of x.

Sketch: By generalizing the construction that took us from
the max cut local optimality under the natural neighbor-
hood for the party affiliation game. The players are dimen-
sions of the solution space, and a local search improvement is
translated into a sequence of Nash defections (first by a lead
player, then by others) leading to a new feasible solution.

5. DISCUSSION AND OPEN PROBLEMS
What other games are guaranteed to have pure Nash equi-

libria? Vetta identifies in [25] the “basic utility games” as
another class of games where the Nash dynamics converges,
as proven by a general potential function. The network cre-
ation games [4] are another example, and so are congestion
games with subjective delays played on a network of parallel
edges[14]. In these cases, however, some equilibrium can be
produced in polynomial time by an inductive argument.
Consider yet another variant of congestion games, the one

with player-specific delays. We have n players andm parallel
edges (strategies), each with a delay function de(S), a non-
decreasing function of the specific set of the players choosing
e (as opposed to their number). Generalizing slightly a result
in [6] we can show:

Proposition 2. In any congestion game with player-specific
delays the Nash dynamics converges.

Proof. Consider a state s, inducing a partition S1, . . . , Sm

of the set of players to the m edges, and consider the multi-
set of numbers µ(s) = {de1(S1), . . . , dem(Sm)}. Suppose
that a player defects from Si to Sj to form a state s′; it is
easy to see that µ(s′) is lexicographically smaller than µ(s).

The above argument shows that a quite large class of
games has pure equilibria, with the corresponding problem
in PLS. However, the potential function used here is rather
novel (sort the components and weigh them by the powers
of a large number), and we have no idea if such problems
can be PLS-complete. Incidentally, counter-examples show
that such games in more general networks fail to have pure
Nash equilibria.
Are potential functions (the discrete analog of Lyapunov

functions) the only way to establish convergence of the Nash
dynamics? If the dynamics is acyclic, then there is always
an awkward potential function (the topological ordering of
the state), but it seems to require exponentially time to

compute. Are there examples of convergent games that do
not have polynomial-time computable potential functions?
Finally, yet another genre of pure equilibrium existence

argument, in fact one of an algebraic, combining nature,
seems to be this: If two games are known to have pure
equilibria, and their payoff functions are (in some precise
sense not defined here) cross-monotonic, then their union
(same players, the union of the strategy spaces, and the same
payoffs) is also guaranteed to have pure Nash equilibria, by
a continuity argument. Facility location-related games are
an example where this type of argument applies.

6. ACKNOWLEDGEMENTS
We thank Tim Roughgarden for enlightening discussions.

7. REFERENCES
[1] M. Beckmann, C. McGuire, and C. Winsten. Studies

in the Economics of Transportation. Yale University
Press, 1956.

[2] V. Conitzer and T. Sandholm. Complexity results
about nash equilibria. In Proc. of IJCAI, pages
765–771, 2003.

[3] S. C. Dafermos and F. T. Sparrow. The traffic
assignment problem for a general network. Journal of
Research of the National Bureau of Standards,
73(2):91–118, 1969.

[4] A. Fabrikant, A. Luthra, E. Maneva, C. H.
Papadimitriou, and S. Shenker. On a network creation
game. In Proc. of ACM PODC, pages 347–351, 2003.

[5] L. Fleischer, 2004. Personal Communication.

[6] D. Fotakis, S. Kontogiannis, E. Koutsoupias,
M. Mavronicolas, and P. Spirakis. The structure and
complexity of nash equilibria for a selfish routing
game. In Proc. of ICALP, pages 123–134, 2002.

[7] N. Garg and J. Konemann. Faster and simpler
algorithms for multicommodity flow and other
fractional packing problems. In IEEE Symposium on
Foundations of Computer Science, pages 300–309,
1998.

[8] A. V. Goldberg and R. E. Tarjan. Finding
minimum-cost circulations by successive
approximation. Mathematics of Operations Research,
15(3):430–466, 1990.

[9] M. D. Grigoriadis and L. G. Khachiyan. Coordination
complexity of parallel price-directive decomposition.
Mathematics of Operations Research, 21:321–340,
1996.

[10] D. S. Johnson, C. H. Papadimitriou, and
M. Yannakakis. How easy is local search? Journal of
Computer and System Sciences, 37:79–100, 1988.

[11] A. V. Karzanov and S. T. McCormick. Polynomial
methods for separable convex optimization in
unimodular linear spaces with applications. SIAM
Journal of Computing, 26(4):1245–1275, 1997.

[12] M. W. Krentel. Structure in locally optimal solutions.
In Proc. of IEEE FOCS, pages 216–221, 1989.

[13] R. J. Lipton, E. Markakis, and A. Mehta. Playing
large games using simple strategies. In Proc. of ACM
E-Commerce, pages 36–41, 2003.

[14] I. Milchtaich. Congestion games with player-specific
payoff functions. Games and Economic Behavior,
13:111–124, 1996.

609

[15] D. Monderer and L. S. Shapley. Potential games.
Games and Economic Behavior, 14:124–143, 1996.

[16] J. F. Nash. Equilibrium points in n-person games. In
Proc. of National Academy of Sciences, volume 36,
pages 48–49, 1950.

[17] J. B. Orlin, A. P. Punnen, and A. S. Schulz.
Approximate local search in combinatorial
optimization. In Proc. of SODA, pages 580–589, 2004.

[18] C. H. Papadimitriou. The complexity of the
lin-kernighan heuristic for the traveling salesman
problem. SIAM Journal on Computing, 21(3):450–465,
1992.

[19] C. H. Papadimitriou. On the complexity of the parity
argument and other inefficient proofs of existence.
Journal of Computer and System Sciences,
48(3):498–532, 1994.

[20] R. W. Rosenthal. A class of games possessing
pure-strategy nash equilibria. International Journal of
Game Theory, 2:65–67, 1973.

[21] T. Roughgarden and É. Tardos. Bounding the
inefficiency of equilibria in nonatomic congestion
games. Games and Economic Behavior. To appear.

[22] T. Roughgarden and É. Tardos. How bad is selfish
routing? J. ACM, 49(2):236–259, 2002.

[23] R. Savani and B. von Stengel. Long lemke-howson
paths. Technical Report LSE-CDAM-2003-14, LSE,
2003.

[24] A. A. Schäffer and M. Yannakakis. Simple local search
problems that are hard to solve. SIAM Journal on
Computing, 20(1):56–87, 1991.

[25] A. Vetta. Nash equilibria in competitive societies,
with applications to facility location, traffic routing
and auctions. In Proc. of IEEE FOCS, pages 416–425,
2002.

[26] B. von Stengel. Computing equilibria for two-person
games. In R. J. Aumann and S. Hart, editors,
Handbook of Game Theory, Vol. 3, chapter 45, pages
1723–1759. North-Holland, Amsterdam, 2002.

[27] M. Voorneveld, P. Borm, F. van Megen, S. Tijs, and
G. Facchini. Congestion games and potentials
reconsidered. International Game Theory Review,
1:283–299, 1999.

APPENDIX

A. PROOF SKETCH OF LEMMA 2
To prove Lemma 2, we show that the reduction in [24]

from circuitflip to posnae3flip yields instances of the
latter which, once cast as xpnae3flip, always have a valid
witness.
The reduction in [24] produces, given a circuit with n

gates (without loss of generality, all gates are NORs, with 2
inputs and a fan-out of at most 3), m outputs, and p inputs,
a posnae3flip instance with the following variables:

Numbering gates from 2 to 2n, we have, for each gate
i = 2h (and separately, for each pair (input,gate), with
index i replaced with k, i): gi, y2h−1, y2h, z2h−1, z2h,
and “local variables” (α1

i , α
2
i , β

1
i , β

2
i , β

3
i , γ

1
i , γ

2
i , γ

3
i ,

δ1i , δ
2
i , ωi, ρi, ψ

1
i , ψ

2
i , ψ

3
i , ψ

4
i , ψ

5
i , ψ

6
i , ζ

1
i , ζ

2
i , ζ

3
i , ζ

4
i , ζ

5
i)

Implicitly, each output gate is also labeled cj , tk,j , ĉj ,
or t̂k,j (the existence of negatives of outputs is guar-

anteed, i.e. built into the circuit beforehand); the cj ’s
correspond to gi’s, and tk,j ’s — to gk,i’s

For each input k: dk, d̂k, ek, êk, vk, wk, and “local
variables” (θ1k, θ

2
k, ηk, µ

1
k, µ

2
k, µ̂

2
k)

1+p extra variables: y2n+1, and yk,2n+1 for each input
k.

Figure 2 lists all the clauses produced in the reduction;
all indexes k and k′ range over inputs, indexes i range over
“real” gates (even numbers from 2 to 2n), indexes h range
over all numbers between 1 and 2n+1, and indexes j range
over all outputs. The notation I1(gi) refers to the first in-
put to gate i, whether it’s the output of some other gate or
an input to the circuit (respectively, either a gi′ or a vk/wk

variable). See [24] for the full treatment of the original re-
duction.
To translate this into the necessary xpnae3flip form,

note that (a) any posnae3flip clause that contains 2 vari-
ables and a literal can be put into C2 or C′

2, and (b) the sole
C1 clause arises from clauses in the “clique” in group 1.c1.
Then, the witness is constructed according to the per-

variable ordered lists shown in Figure 3. Notation of the
form {(sequence of clauses with k as an argument)}k=1...p

means “that sequence for k = 1, then that sequence for
k = 2, etc.” Since some of the g, v, w, c, and t̂ variables
are “aliased” to each other2, the table indicates where, e.g.,
a sequence of clauses for a c variable may actually be pre-
ceded by a sequence of clauses for the g variable that this c
is synonymous with. Both C2 and C′

2 clauses are included
in the lists, even though they appear in only 1 of the lists.
Clauses in parentheses are the single-variable clauses; these
do not affect the witness. Lastly, translating from the per-
gate variables (those indexed with i) to the per-(input,gate)
variables (those indexed with k, i) is just a matter of replac-
ing “2” with “3” as the “clause class.”
The full proof that this witness is valid proceeds roughly

by:

1. Showing that most “local variables” (both per-gate and

per-input) and g’s, v’s, w’s, c’s, and d̂’s do not interact
with variables outside their respective gate or input —
that is, there is no way for the path of, e.g., α1

1 to di-
verge to areas of the witness corresponding to variables
unrelated to gate 1, and then come back to the node
(α1

1)t.

2. Inspecting all exceptions to the above (γ, ψ, and ζ vari-
ables) and all the local interactions to verify that all
alternate paths are longer.

3. Showing that, in most cases, the d, d̂, e, ê, y, and z
variables do not permit paths to a variable in the same
group but with a lower index. This way, any diversion
by a lower-numbered variable is bound to cause pro-
hibitive congestion for some higher-numbered variable
in the same group.

4. Inspecting all the exceptions to this (d’s in the C1

clause, and y/z variables going back by 1 index in
2B/3B), and connections between variable groups to
verify that all alternate paths are longer.

We omit the remaining details here.

2We assume the circuit is preprocessed to not have any in-
puts feeding directly to outputs, so the only aliased group-
ings can be {v, g}, {w, g}, {g, c}, and {g, t̂}

610

1. ∀k �= k′:

c1. dk, dk′ , 1

2A. ∀i (i.e. even):
c1. I1(gi), α

1
i , 1

c2. α1
i , β

1
i , 0

c3. β1
i , γ

1
i , gi

c4. γ1
i , zi, 0

c5. I1(gi), δ
1
i , 0

c6. I2(gi), α
2
i , 1

c7. α2
i , β

2
i , 0

c8. β2
i , γ

2
i , gi

c9. γ2
i , zi, 0

c10. I2(gi), δ
2
i , 0

c11. δ1i , δ
2
i , ωi

c12. δ1i , δ
2
i , β

3
i

c13. β3
i , γ

3
i , gi

c14. yi, γ
3
i , 1

2B. ∀h �= 2n+ 1:

c1. yh, zh, 0

c2. zh, yh+1, 1
(h < 2n)

2C. c1. z2n, y2n+1, 1

c2. y2n+1, 1

c3. ∀k, y2n+1, dk, 0

2D. ∀i:
c1. ψ1

i , α
1
i

c2. ψ2
i , α

2
i

c3. ψ3
i , γ

1
i

c4. ψ4
i , γ

2
i

c5. ψ5
i , β

3
i

c6. ψ6
i , ωi

c7. ψ1
i , yi−1

c8. ψ2
i , yi−1

c9. ψ3
i , yi−1

c10. ψ4
i , yi−1

c11. ψ5
i , yi−1

c12. ψ6
i , yi−1

c13. ζ1i , β
1
i

c14. ζ2i , β
2
i

c15. ζ3i , δ
1
i

c16. ζ4i , δ
2
i

c17. ζ5i , γ
3
i

c18. ζ1i , zi−1

c19. ζ2i , zi−1

c20. ζ3i , zi−1

c21. ζ4i , zi−1

c22. ζ5i , zi−1

2E. ∀i:
c1. ρi, α

1
i

c2. ρi, α
2
i

c3. ρi, gi

c4. ρi, 0

3A. ∀k, i (i.e. even):
c1. I1(gk,i), α

1
k,i, 1

c2. α1
k,i, β

1
k,i, 0

c3. β1
k,i, γ

1
k,i, gk,i

c4. γ1
k,i, zk,i, 0

c5. I1(gk,i), δ
1
k,i, 0

c6. I2(gk,i), α
2
k,i, 1

c7. α2
k,i, β

2
k,i, 0

c8. β2
k,i, γ

2
k,i, gk,i

c9. γ2
k,i, zk,i, 0

c10. I2(gk,i), δ
2
k,i, 0

c11. δ1k,i, δ
2
k,i, ωk,i

c12. δ1k,i, δ
2
k,i, β

3
k,i

c13. β3
k,i, γ

3
k,i, gk,i

c14. yk,i, γ
3
k,i, 1

3B. ∀k, h �= 2n+ 1:

c1. yk,h, zk,h, 0

c2. zk,h, yk,h+1, 1
(h < 2n)

3C. ∀k:
c1. yk,2n+1, dk, 0

3D. ∀k, i:

c1. ψ1
k,i, α

1
k,i

c2. ψ2
k,i, α

2
k,i

c3. ψ3
k,i, γ

1
k,i

c4. ψ4
k,i, γ

2
k,i

c5. ψ5
k,i, β

3
k,i

c6. ψ6
k,i, ωk,i

c7. ψ1
k,i, yk,i−1

c8. ψ2
k,i, yk,i−1

c9. ψ3
k,i, yk,i−1

c10. ψ4
k,i, yk,i−1

c11. ψ5
k,i, yk,i−1

c12. ψ6
k,i, yk,i−1

c13. ζ1k,i, β
1
k,i

c14. ζ2k,i, β
2
k,i

c15. ζ3k,i, δ
1
k,i

c16. ζ4k,i, δ
2
k,i

c17. ζ5k,i, γ
3
k,i

c18. ζ1k,i, zk,i−1

c19. ζ2k,i, zk,i−1

c20. ζ3k,i, zk,i−1

c21. ζ4k,i, zk,i−1

c22. ζ5k,i, zk,i−1

3E. ∀k, i:
c1. ρk,i, α

1
k,i

c2. ρk,i, α
2
k,i

c3. ρk,i, gk,i

c4. ρk,i, 0

4. ∀k, j
c1. dk, cj , 0

c2. dk, t̂k,j , 1

5. ∀k
c1. dk, d̂k, 1

c2. d̂k, 0

6. ∀k
c1. dk, θ

1
k, 1

c2. d̂k, θ
2
k, 0

c3. wk, θ
1
k, ηk

c4. wk, θ
2
k, ηk

c5. vk, ηk

c6. θ1k, ηk

c7. θ2k, ηk

7. ∀k
c1. µ1

k, vk, wk

c2. µ̂2
k, vk, wk

c3. µ2
k, µ̂

2
k

c4. µ1
k, µ

2
k, ek

c5. ek, êk

c6. ek, 0

c7. µ1
k, 0

c8. µ̂2
k, 1

8. ∀k, h �= 2n+ 1

c1. ek, yk,h, 1

c2. êk, zk,h, 0

9. ∀k �= k′, ∀h
c1. ek, zh, 1

c2. ek, zk′,h, 1

c3. êk, yh, 0

c4. êk, yk′,h, 0

10. ∀k �= k′, ∀h
c1. dk, yh, 1

c2. dk, yk′,h, 1

c3. d̂k, zh, 0

c4. d̂k, zk′,h, 0

11. ∀k, h
c1. vk, wk

c2. dk, 1

c3. zh, 1

c4. zk,h, 1

c5. yh, 0

c6. yk,h, 0

Figure 2: Clauses in the PLS-reduction from circuitflip to posnae3sat in [24].

611

gi {2E.c3, 2A.c3, 2A.c8, 2A.c13} as output, or the v/w sequence; then, {2A.c1, 2A.c5} or {2A.c6, 2A.c10} as
1-3 inputs, in gate order, or the c/t̂ sequence

α1
i 2A.c2, 2A.c1, 2D.c1, 2E.c1
α2

i 2A.c7, 2A.c6, 2D.c2, 2E.c2
β1

i 2A.c2, 2A.c3, 2D.c13
β2

i 2A.c7, 2A.c8, 2D.c14
β3

i 2A.c12, 2A.c13, 2D.c5
γ1

i 2A.c3, 2D.c3, 2A.c4
γ2

i 2A.c8, 2D.c4, 2A.c9
γ3

i 2A.c13, 2D.c17, 2A.c14
δ1i 2A.c11, 2A.c12, 2A.c5, 2D.c15
δ2i 2A.c11, 2A.c12, 2A.c10, 2D.c16
ωi 2A.c11, 2D.c6
ρi 2E.c3, 2E.c1, 2E.c2, (2E.c4)
ψ1

i 2D.c1, 2D.c7
ψ2

i 2D.c2, 2D.c8
ψ3

i 2D.c3, 2D.c9
ψ4

i 2D.c4, 2D.c10
ψ5

i 2D.c5, 2D.c11
ψ6

i 2D.c6, 2D.c12
ζ1i 2D.c13, 2D.c18
ζ2i 2D.c14, 2D.c19
ζ3i 2D.c15, 2D.c20
ζ4i 2D.c16, 2D.c21
ζ5i 2D.c17, 2D.c22
y2h−1 2D.c7, 2D.c8, 2D.c9, 2D.c10, 2D.c11, 2D.c12; 2B.c2, 2B.c1; 9.c3k=1...p; 10.c1k=1...p; (11.c5)
y2h 2A.c14; 2B.c2, 2B.c1; 9.c3k=1...p; 10.c1k=1...p; (11.c5)
z2h−1 2D.c18, 2D.c19, 2D.c20, 2D.c21, 2D.c22; 2B.c1, 2B.c2; 9.c1k=1...p; 10.c3k=1...p; (11.c3)
z2h 2A.c4, 2A.c9; 2B.c1, {2B.c2 or 2C.c1 for 2n}; 9.c1k=1...p; 10.c3k=1...p; (11.c3) for 2n
y2n+1 2C.c1; 9.c3k=1...p; {2C.c3, 10.c1}k=1...p; (2C.c2, 11.c5)
yk,2h−1 3D.c7, 3D.c8, 3D.c9, 3D.c10, 3D.c11, 3D.c12; 3B.c2, 3B.c1; {8.c1 if k′ = k, 9.c4 else}k′=1...p; 10.c2k′=1...p,

(11.c6)
yk,2h 3A.c14; 3B.c2, 3B.c1; {8.c1 if k′ = k, 9.c4 else}k′=1...p; 10.c2k=1...p; (11.c6)
zk,2h−1 3D.c18, 3D.c19, 3D.c20, 3D.c21, 3D.c22; 3B.c1, 3B.c2; {8.c2 if k′ = k, 9.c2 else}k′=1...p; 10.c4k′=1...p, (11.c4)
zk,2h 3A.c4, 3A.c9; 3B.c1, 3B.c2; {8.c2 if k′ = k, 9.c2 else}k′=1...p; 10.c4k′=1...p; (11.c4)
yk,2n+1 9.c4k′=1...p; {3C.c1 if k′ = k, 10.c2 else}k′=1...p; (11.c6)
cj g output sequence, then 4.c1k=1...p

tk,j (not used)
ĉj (not used)
t̂k,j g output sequence, then the single 4.c2
dk The 1.c1 clique; 6.c1; 5.c1; 4.c1j=1...m, 4.c2j=1...m; 10.c1h=1...2n+1, 2C.c3; {3C.c1 if k′ = k, else

10.c2h=1...2n+1}k′=1...p; (11.c2)

d̂k 6.c2; 5.c1; 10.c3h=1...2n+1; 10.c4h=1...2n+1; (5.c2)
ek 7.c4, 7.c5; 9.c1, {8.c1h=1...2n+1 if k′ = k, else 9.c2h=1...2n}k′=1...p; (7.c6)
êk 7.c5; 9.c3, {8.c2h=1...2n if k′ = k, else 9.c4h=1...2n+1}k′=1...p

vk 11.c1, 7.c1, 7.c2, 6.c5; then g input sequences
wk 11.c1, 7.c1, 7.c2, 6.c3, 6.c4; then g input sequences
θ1k 6.c6, 6.c3, 6.c1
θ2k 6.c4, 6.c7, 6.c2
ηk 6.c6, 6.c3, 6.c4, 6.c7, 6.c5
µ1

k 7.c1, 7.c4, (7.c7)
µ2

k 7.c3, 7.c4
µ̂2

k 7.c3, 7.c2

Figure 3: Per-variable ordered lists that comprise the valid witness.

612

