The Complexity of Pure Nash Equilibria

Alex Fabrikant Christos Papadimitriou Kunal Talwar

CS Division, UC Berkeley

Definitions

- A game: a set of *n* players, a set of actions S_i for each player, and a payoff function u_i mapping states
 (combinations of actions) to integers for each player
- A **pure Nash equilibrium**: a state such that no player has an incentive to unilaterally change his action
- A randomized (or mixed) Nash equilibrium: for each player, a distribution over his states such that no player can improve his expected payoff by changing his action
- A symmetric game: a game with all S_i's equal, and all u_i's identical and symmetric as functions of the other n-1 players

Context

- Lots of work studying Nash equilibria:
 - Whether they exist
 - What are their properties
 - How they compare to other notions of equilibria
 - etc.
- But how hard is it to actually find one?

Complexity: Randomized NE

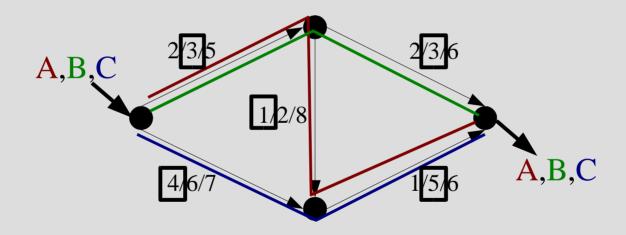
- Nash's theorem guarantees existence of randomized NE, so "find a randomized NE" is a total function, and NP-completeness is out of the question, but:
 - Various slight variations on the problem quickly become NP-Complete [Conitzer&Sandholm '03]
 - The two-person case has an interesting combinatorial construction, but with exponential counter-examples [von Stengel '02; Savani&von Stengel '03]
 - It has an "inefficient proof of existence", placing it in PPAD; other related problems are complete for PPAD, although NE is not known to be [Papadimitriou '94]

Complexity: Pure NE

- Natural question: what about pure equilibria?
 - When do they exist?
 - How hard are they to find?
- Immediate problem: with *n* players, explicit representations of the payoff functions are exponential in *n*; brute-force search for pure NE is then linear (on the other hand, fixed #players ⇒ boring)
- Our focus: The complexity of finding a pure Nash equilibrium in broad *concisely-representable* classes of games

Congestion games

• Well-studied class of games with clear affinity to networks [Roughgarden&Tardos '02, inter alia]



Congestion games (cont)

General congestion game:

- finite set E of resources
- non-decreasing delay function: $d:\!E\!\times\!\!\{1,\!\dots,n\}\!\rightarrow\!\mathbb{Z}$
- S_i 's are subsets of E
- Cost for a player: (number of players using resource e in state s)

$$\sum_{e \in s_i} d_e(f_s(e))$$
(delay function for resource e)

 Network congestion game: each edge is a resource, and each player has a source and a sink, with paths forming allowed strategies

Congestion games & potential functions

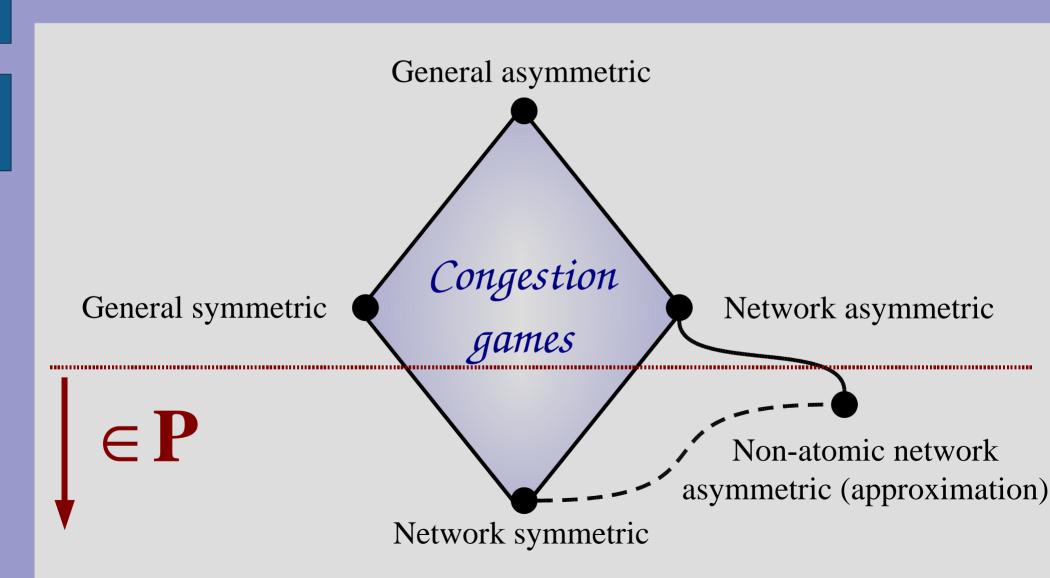
Congestion games have a potential function:

$$\phi(s) = \sum_{e} \sum_{j=1}^{f_s(e)} d_e(j)$$

If a player changes his strategy, the change in the potential function is **equal** to the change in his payoff

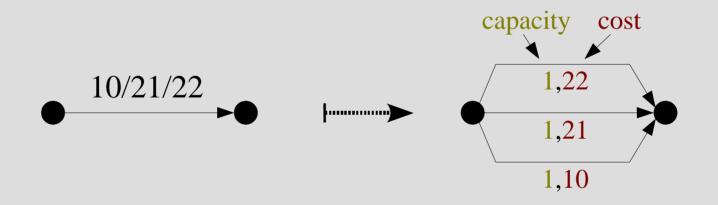
- Local search on potential function guaranteed to converge to a local optimum – an pure NE [Rosenthal '73]
- Note: the potential is *not* the social cost

Our results: upper bounds



Algorithm: symmetric network games

 Reduction to min-cost-flow: transform each edge into n edges, with capacities 1, costs d_a(1),...,d_a(n):

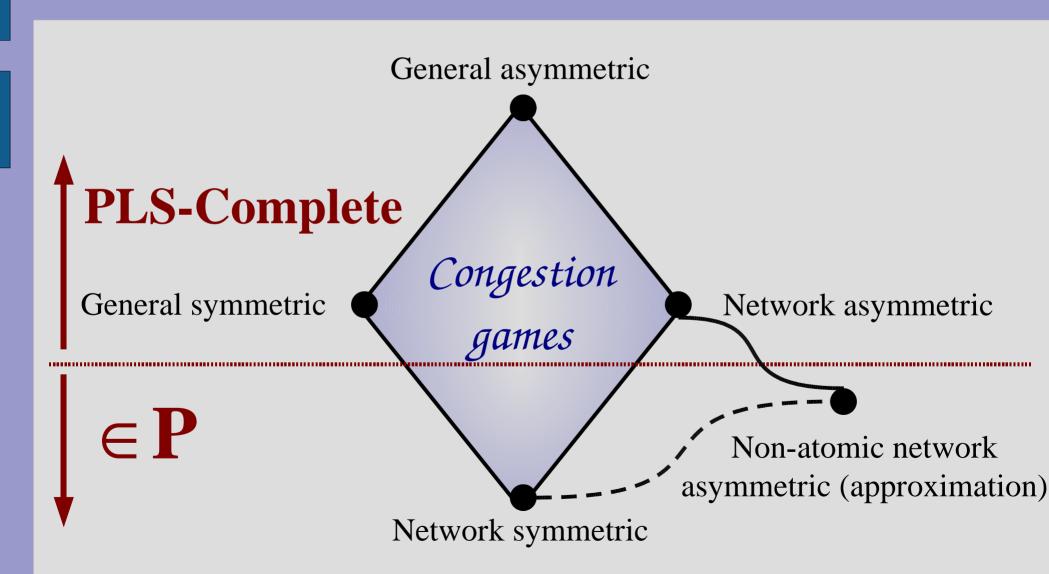


Integral min-cost flow ⇒ local minimum of potential function

Algorithm: non-atomic games

- [Roughgarden&Tardos '02] studied non-atomic congestion games: what happens when n→∞ (with continuous delay functions)? Can cast as convex optimization, and thus approximate in polynomial time by the ellipsoid method.
- We modify the above to get, in *strongly* polynomial time, approximate pure Nash equilibria (no player can benefit by >ε) in the *non-atomic asymmetric network case*
- N.B.: Another strongly-polynomial approximation scheme follows from the OR literature, but it is not clear that it produces approximate Nash equilibria

Our results: Lower bounds



P...what?

- PLS (polynomial local search [Johnson, et al '88]) "find some local minimum in a reasonable search space":
 - A problem with a search space (a set of feasible solutions which has a neighborhood structure)
 - A poly-time cost function c(x,s) on the search space
 - A poly-time function that g(x,s), given an instance x and a feasible solution s, either returns another one in its neighborhood with lower cost or "none" if there are none
- E.g.: "Find a local optimum of a congestion game's potential function under single-player strategy changes"
- Membership in PLS is an inefficient proof of existence

PLS-Completeness

- PLS reduction: (instance_A,search space_A)[→](instance_B,search space_B)
 Local optima of A must map to local optima of B
- Basic PLS-Complete problem: weighted CIRCUIT-SAT under input bitflips; since [JPY'88], local-optimum relatives of TSP, MAXCUT, SAT shown PLS-Complete
- We mostly use POS-NAE-3SAT (under input bitflips): NAE-3SAT with positive literals only; very complex PLS reduction from CIRCUIT-SAT due to [Schaeffer&Yannakakis '91]

PLS-Completeness: general asymmetric

• POS-NAE-3SAT \leq_{PLS} General Asymmetric CG:

variable x 🖙 player x

clause c \rightarrow resources e_c , e_c'

$$S_{x} = \{ \begin{cases} x = True \\ \{e_{c} | c \ni x \} \end{cases}, \begin{cases} x = False \\ \{e_{c} ' | c \ni x \} \end{cases} \}$$

$$d_{e_{c}}(1) = d_{e_{c}}(2) = 0 ; d_{e_{c}}(3) = w(c)$$

- Input bitflip maps to a single-player strategy change, with the same change in cost, so search space structure preserved
- General Asymmetric CG \leq_{PLS} General Symmetric CG:
 - "Anonymous" players arbitrarily take on the roles of "nonanonymous" players in the asymmetric game

PLS-Completeness: general symmetric

- General Asymmetric CG \leq_{PLS} General Symmetric CG:
 - Introduce an extra resource r_x for each player x

$$-S = \bigcup_{x} \{s \cup \{r_x\} \mid s \in S_x\}$$

- Same number of players, so any solution that uses an r_x twice has an unused r_x , so can't be a local minimum
- Otherwise, players arbitrarily take on the "roles" of players in the original game

PLS-Completeness: network asymmetric

- First guess: make a network following the idea of the general asymmetric reduction each POS-NAE-3SAT clause becomes two edges, add extra edges so each variable-player traverses either all e_c edges, or all the e_c' edges
- Problem: How do we prevent a player from taking a path that doesn't correspond to a consistent assignment?
- For a dense instance of POS-NAE-3SAT, this appears unavoidable

PLS-Completeness: network asymmetric (cont.)

- But: the Schaeffer-Yannakakis reduction produces a very structured, sparse instance of POS-NAE-3SAT
- Our approach:
 - tweak formulae produced by the S-Y reduction
 - carefully arrange the network so "non-canonical" paths are never a good choice
- Details:
 - 39 variable types
 - 124 clause types
 - 3 more talks today
 - full reduction and a sketch of the proof are in the paper

More on PLS-completeness

- "Clean" PLS reductions: an edge in the original search space corresponds to a short path in the new search space (holds for ours)
- A clean PLS reduction preserves interesting complexity properties (shared by CIRCUIT-SAT, POS-NAE-3SAT, etc):
 - Finding the local optimum reachable from a specific state is PSPACE-complete
 - There are instances with states exponentially far from any local optimum

More on potential functions

- Potential functions clearly relevant to equilibria, so: *How applicable is this method?*
- [Monderer&Shapley '96] If any game has a potential function, it's equivalent to a (slightly generalized) congestion game
- Party affiliation game: n players, actions: {-1,1}, "friendliness" matrix {w_{ij}}. Payoff: p(i)=sgn $\sum s_i \cdot s_j \cdot w_{ij}$
- Follow the gradient of Φ(s)=∑_{i,j} s_i·s_j·w_{ij} terminates at a pure NE; but agrees with payoff changes only in sign (and is not a congestion game)

General potential functions

- Define a general potential function as one that agrees just in sign with payoff changes under single-player strategy changes (if one exists, there is a pure NE)
- The problem of finding a pure NE in the presence of such a function is clearly in PLS
- **Theorem**: *Any* problem in PLS corresponds to a family of general potential games with polynomially many players; the set of pure Nash equilibria corresponds exactly to the set of local optima

Conclusions

- We have:
 - Given an efficient algorithm for symmetric network congestion games (and an approximation scheme for the non-atomic asymmetric case)
 - 2. Shown PLS-completeness of both extensions (asymmetry and general congestion game form); "clean" reductions imply other complexity results
 - 3. Characterized a link between PLS and general potential games
- Congestion games are thus as hard as any other game with pure NEs guaranteed by a general potential function

Open problems

- Other classes of games where the Nash dynamics converges:
 - Via general potential functions:
 - Basic utility games in [Vetta '02]
 - Congestion games with player-specific delays [Fotakis, et al '02]
 - An algebraic argument shows that the union of 2 games with pure NE's, under some conditions, retains pure NE's
- Acyclic Nash dynamics guarantees some potential function (toposort the solution space), but is there always a tractable one?
- Pointed out yesterday [Wigderson, yesterday]: complexity classification of games?