
The complexity of game dynamics: BGP oscillations, sink equlibria,

and beyond

Alex Fabrikant∗ Christos H. Papadimitriou†

July 6, 2007

Abstract

We settle the complexity of a well-known problem in networking by establishing that it is
PSPACE-complete to tell whether a system of path preferences in the BGP protocol [25] can
lead to oscillatory behavior; one key insight is that the BGP oscillation question is in fact one
about Nash dynamics. We show that the concept of sink equilibria proposed recently in [11] is
also PSPACE-complete to analyze and approximate for graphical games. Finally, we propose a
new equilibrium concept inspired by game dynamics, unit recall equilibria, which we show to be
close to universal (exists with high probability in a random game) and algorithmically promising.
We also give a relaxation thereof, called componentwise unit recall equilibria, which we show to
be both tractable and universal (guaranteed to exist in every game).

∗Computer Science Division, University of California at Berkeley. Research supported by the Fannie and John Hertz
Foundation Fellowship. email: alexf@cs.berkeley.edu

†Computer Science Division, University of California at Berkeley. Research supported by NSF grant CCR-0121555
and CCF-0515259 and a grant from Microsoft Research. email: christos@cs.berkeley.edu

1 Introduction

The recent proof that finding a Nash equilibrium is an intractable problem [6, 4] is a serious
complexity-theoretic criticism of game theory’s most prominent solution concept. In its aftermath,
it is natural to seek alternatives. The approximate Nash equilibrium is perhaps the most obvious
target, and it is indeed being pursued vigorously [19, 7, 17] while negative results about it begin to
surface as well [5, 7, 9].

What does one look for in a solution concept?

1. First it must be natural, compelling, convincing, realistic as a behavioral prediction. Here the
mixed Nash equilibrium does not do too well, as it postulates deliberate randomization whose
only goal is the creation of a flat objective encouraging similar randomization by others —
arguably not the most natural behavior. The correlated equilibrium [1, 23] fares even worse,
with its requirement of a trusted randomizer. But the pure Nash equilibrium is, of course, ideal
from this point of view. Incidentally, see [10] for an extensive commentary on what it means
for an equilibrium concept to be realistic in the context of the Internet.

2. It must be guaranteed to exist, an obvious desideratum for a behavioral prediction, one that
ensures universal applicability. The mixed Nash equilibrium and, as a corollary, the correlated
equilibrium do well here, but not pure Nash.

3. Finally (and this is an important conceptual contribution of computer science to this field)
for a solution concept to be a credible prediction of the behavior of a group of agents it
must be computationally tractable. This criterion separates the mixed Nash equilibrium from
the correlated and the pure Nash one. But if we consider multi-player succinctly representable
games (as we have to, if we want to be true to our ambition of using game theory to understand
the Internet and electronic commerce), only the correlated equilibrium survives (most of the
time) [23].

The second criterion, universality, easily presents itself for many solution concepts based on the
dynamics of the gameplay — every game starts somewhere, and goes from there. An interesting idea
along these lines, which has been proposed and pursued recently [11] in the context of the “price of
anarchy”, is that of sink equilibria. It is an extension of the pure Nash equilibrium, in cases where
it does not exist, to its natural dynamic generalization: the ergodic states of the Nash dynamics.
Recall that the Nash dynamics [8] is a directed graph on the game’s state space (set of pure strategy
profiles, see Section 2), with an edge (s, s′) signifying that s and s′ agree on all players except for
player i, and player i has a better payoff in s′ than in s (in a more restrictive version, s′ represents
i’s best response to s). The pure Nash equilibria are the sinks of this graph. In their absence, we
may want to look at the sink connected components, and postulate that a distribution on them is the
desired solution. Two alternatives emerge: (1) We could focus on one sink component and consider
its steady-state distribution of the corresponding Markov chain, assuming that the chain starts there,
or (2) consider the steady-state distribution of the Markov chain associated with the Nash dynamics,
perhaps assuming a uniform initial distribution (a natural alternative which, to our knowledge, has
not been pursued explicitly).

In this paper we point out that this approach is hindered by devastating complexity-theoretic
obstacles: Even though the distribution (and the expected payoffs) of sink equilibria are easy to
calculate for normal-form games, it is PSPACE-complete to say anything nontrivial about them

2

in succinct games — arguably the most important case (Theorem 2.2). Our proof for the case of
graphical games is a novel simulation of a space-bounded Turing machine by the Nash dynamics of
such a game.

An explicit ambition of the area of algorithmic game theory is to use insights from the interface
between game theory and computation in order to understand the Internet. We next present an
important (and unexpected) applied result of this sort, related to BGP oscillations. Autonomous
systems (ASes) comprising the Internet route traffic originating in their domain or in the domains
of other ASes using a proverbially complex protocol called the Border Gateway Protocol (BGP)
[25, 27]. BGP allows each AS to specify arbitrary preferences on the paths to a destination, and
to selectively offer such paths to others. Possibly because of the complexity of these preferences
and offers (reflecting obscure agreements and opaque interests), BGP is known to occasionally cause
oscillations in the Internet, that is, lengthy, drawn-out sequences of route reassignments by many
AS’s. This is a very disruptive, and consequently well-studied, phenomenon [15, 18, 28, 21]. A
formal approach to BGP oscillations was initiated by [15]; they defined the stable paths problem as
an abstraction of the phenomenon. They defined safety as the absence of oscillatory possibilities,
and gave a necessary condition for safety (the presence of a stable path configuration, known to be
NP-complete to test) and a sufficient condition for safety (the absence of a dispute wheel, a set of
circular preferences), which is coNP-complete to test. But no necessary and sufficient condition had
been known.

In Section 3 we point out that the BGP oscillation problem is in fact also a problem of Nash dy-
namics in a new kind of succinct game (Proposition 3.1). The ASes are players, strategies correspond
to choice of a next hop, and BGP preferences define (in a succinct way) the utility of the resulting
graph for each of the players. Safety is tantamount to the game having only pure Nash equilibria,
and no other sink components with two or more states. Perhaps the main technical contribution of
this paper is that BGP safety is PSPACE-complete (Theorem 3.2), which resolves the complexity
of this important question in networking. The reduction is involved and novel (and has to be quite
different from that of Theorem 2.2).

Incidentally, on an aesthetic level, it is amusing to note that the observed BGP oscillations among
a few ASes are known to often go on for hours or days. Exponentially long computation confined in
a limited space is the hallmark of PSPACE-completeness, so this is a hint that the formal worst-case
intractability proven here may occasionally be echoed in actual observed behavior.

Returning to our quest for appropriate equilibrium concepts, are sink equilibria and other variants
of steady states in Nash dynamics natural and compelling solution concepts? The main shortcoming
of such concepts is that they postulate complete lack of strategic behavior by the players, beyond a
desire for local improvement. A game will have many sink components, and the payoffs will differ
wildly from one component to the other. It would make perfect sense for a player to be strategic in
the beginning (transient phase) of the game, sacrificing short-term gains so as to land on her favorite
sink. How can we model such strategic behavior?

Allowing full strategic behavior brings us to the time-honored and well-studied — if somewhat
inconclusively so — area of repeated games [26, 24, 20], historically the first domain of interaction
between complexity and game theory. The basic problem with this is that repeated games allow
and predict strategic behavior that can be extremely sophisticated ([24]; see [10] for an insightful
discussion of the kinds of strategic behavior one should expect on the Internet). In the interest of
exploring the effect of limited strategic behavior in Nash dynamics, we consider unit recall games. In
such games, players move simultaneously, and each player’s next strategy choice depends only on the
current state (strategy choices by everybody). A player’s strategy is thus a finite automaton whose

3

states are the player’s own strategies, and whose transitions are labeled by the strategy combinations
of everybody else. Once everyone adopts such a strategy, the Nash dynamics becomes deterministic
and ends up in a cycle; the payoff is the time-average payoff of the states on the cycle.

Does the unit recall version of every game (that is, the game in which the available strategies are
all possible unit recall automata) have a pure Nash equilibrium? The answer, at least for bimatrix
games, is “almost”: we show (Theorem 4.2) that a random bimatrix game has such an equilibrium
with probability approaching 1 as the number of strategies grows. Furthermore, w.h.p., such an
equilibrium is easy to find in polynomial time.

However, somewhat surprisingly, these equilibria aren’t completely universal: even the extremely
simple matching pennies game has no such equilibrium (Proposition 4.1, proven by a computer
analysis of the 32×32 game). Then, how hard is it to tell whether a game has a unit-recall equilibrium
in the worst case? The problem is, a priori, in the complexity class Σ2P (it asks whether there exists
a combination of automata such that all defection-automata are unfavorable). We conjecture that it
is in P. And we are half-way there: we can prove, by a reduction to the problem of finding in a graph
the cycle with the smallest average edge length, that the best-response problem for such games is in
P, and therefore the overall problem is in NP.

Another cause for optimism is the behavior of a relaxation of the unit recall equilibrium obtained
from the following observation: Going from one strategy of a unit recall game to another requires
changing a large number of transitions in the automaton/strategy; what if we allow changing just
one transition at a time?

This yields a novel kind of equilibrium that we call componentwise equilibrium, a generalization
of pure Nash.1 Thinking of the strategies/automata as vectors of transitions, we can define an
equilibrium concept by only allowing defections that change a single component. We show that every
multi-player game has a componentwise unit recall equilibrium (CURE). That is, in any game there
are finite automata with the strategies of each player as state space such that no player can increase
her long-term expected payoff by changing one transition (Theorem 4.5) In fact, we can find such an
equilibrium in polynomial time; the correlated equilibrium [23] is the only other solution concept we
know that is guaranteed to exist and easy to find. In view of our stated goal of identifying equilibrium
concepts that are natural, tractable, and guaranteed to exist, these results suggest that the CURE
concept may merit further theoretical attention, and that its more appealing subset, the unit-recall
equilibrium, may also be tractable.

2 The Complexity of Sink Equilibria

In a normal form game G we have n ≥ 2 players 1, 2, . . . , n; for each player i we have a finite set
of strategies Si. We denote by S the set of pure strategy profiles, or states, the Cartesian product
S1 × S2 × · · · × Sn; by S−i we denote the product of all strategy sets except Si. Finally, for each
player i we have a utility function ui mapping S to the integers.

The Nash dynamics of a game is a directed graph with S as its set of vertices, and an edge (s, s′)
if s and s′ agree on all components except for one, say the ith, and ui(s′) > ui(s). The strict Nash
dynamics is a subgraph of the Nash dynamics, where an edge s, s′ signifies, in addition, that i’s
strategy in s′ is i’s best response to s, that is, one of the strategies in Si which, if substituted for

1It is also an instance of a more general, and very promising, idea that extends the pure Nash equilibrium: Suppose
that the strategies of each player are equipped with a cost matrix, and the player defects from a strategy to another
only if the payoff difference is bigger than the cost; this is an idea also treated in [3]. In the case of componentwise
equilibria, the cost is zero if the two strategies differ in one component, and infinity otherwise.

4

the ith component of s, yields the largest possible utility. (We shall henceforth specify strict or not
strict Nash dynamics only in cases that do not apply to both kinds.) A pure Nash equilibrium of a
game is a state that is a sink of the Nash dynamics.

Consider now the strongly connected components of the Nash dynamics, and among those, one
that has no outgoing edges. Such a component is called a sink equilibrium of the game. The Nash
dynamics of a graph define a Markov chain, by assigning equal probabilities to all outgoing edges.
The following are then computational problems2 of interest:

• best (worst) sink: Given a game, what is the highest (or lowest) expected utility for a given
player in the steady-state distribution of a sink equilibrium?

• in a sink: Does a given state s belong to any sink equilibrium?

The following result only involves depth-first search and matrix inversion:

Proposition 2.1 Given a game in normal form, the problems best (worst) sink and in a sink
can be solved in polynomial time

An n-player game requires an exponential, in n, number of bits to be represented; hence, the only
computationally meaningful ways of representing multi-player games must be succinct. A graphical
game is a particularly useful succinct way of representing a game. It is defined in terms of a graph
G = ([n], E) whose set of vertices is the set of players. The utility function ui is now a function
mapping SN(i) to the integers, where SN(i) is the Cartesian product of the strategy sets of player i
and of all players that are adjacent to i in G.

Our main result in this section is this:

Theorem 2.2 in a sink for graphical games is PSPACE-complete.

Proof sketch: Similarly to the BGP result below, we seek to use sink equilibria of a graphical
game to capture the halting behavior of a space-bounded Turing machine.

We define an intermediate construction, a local-dependence resetting cycle machine (LRCM),
which moves continously and unidirectionally around a circular tape, and updates tape cells based
on its internal state and the state of nearby cells, but not the current one. This mirrors the game
constraint that a player cannot decide on its new strategy based on its current strategy. The reduction
to a graphical game then creates a graph which locally models the tape with two players per cell (a
“tape cell” player and a “state” player), and O(1) edges to players modeling nearby cells. We design
the utilities so that the Nash dynamics, starting at the canonical starting state, have a “ripple” of
activity move around the cycle until the corresponding computation halts. To guarantee that the
canonical starting state of a game is in a large sink equilibrium iff the machine does not halt, we
have the LRCM reset to its starting state after it takes enough steps to have exhausted all possible
computation states and looped somewhere.

The full proof is given in an appendix.
As an easy corollary, by taking liberties with the scale of the utility functions, we get that the

problems best (worst) sink for graphical games cannot be approximated at all.

2More precisely, these are families of problems, parametrized by one’s choice of game representation

5

3 The Complexity of BGP Oscillations

A BGP system B is a directed graph G = (V,E) whose nodes are called autonomous systems or
ASes, except for v0 ∈ V , called the target node (we assume all traffic is directed to it). Also, for each
v ∈ V − {v0} there is a function λv, represented as a Boolean circuit, say, mapping all simple paths
between v and v0 to the integers. λv also assigns an integer preference value to ⊥, the absence of
a path (in which case all paths whose utility is less than that of ⊥ can be considered “disallowed
paths”).

The BGP system’s state is a path assignment π(u) mapping node u to a path from u to v0
(or the absence thereof). Given a state, let us define C(π, u) = {(u, π(v))|(u, v) ∈ E} to be the
list of paths u can choose from, starting with a link to a neighbor v, and continuing with the
current path for v. A path assignment π is stable if, for all u, π(u) = arg maxP∈C(π,u) λ

u(P). We’ll
abbreviate path assignments by showing just ν(u), the next hop of the paths from u to v0, i.e.
π(u) = (u, ν(u), ν(ν(u)) . . . , νk(u) = v0).

From a given state π, a node a ∈ V can be activated, in which case a’s path is updated with
π′(a) = arg maxP∈C(π,a) λ

a(P). That is, if there is a better option for a (a is “dissatisfied”) then the

best such option is adopted, otherwise, π′ = π. We then say π
a−→ π′. An infinite activation sequence

is fair, ([15]) if, for all v ∈ V and i ∈ Z, there is a j > i such that aj = v. A system is said to be

convergent if for all fair sequences (a1, a2, . . .), there exists an x such that π0
a1−→ π1

a2−→ . . .
ax−→ πx

and πx is stable.
Our BGP model follows closely the stable paths problem (SPP) model of [15], see also [14]. One

exception is that they provide an explicit list of ordered paths, instead of an algorithm for comparing
paths. Our version is closer to the realities of both the formal BGP protocol specification, in which
ASes are allowed to implement arbitrary preference functions, and real BGP implementations in
routers, which somewhat limit the preference functions, but allow more freedom than just an explicit
ordering of paths. Another important difference is that our model allows ties between paths; the real
BGP actually does not (this is BGP’s “Phase 2” tie-breaking as described in Sec. 9.1.2.1 of [25]).
Our main lower bound proof below uses this possibility of ties. However, we can extend the result
to not require ties; a sketch of this is given at the end of this section. A final difference is that the
model of [15] is explicit about the asynchronous nature of the communication between the ASes by
introducing message queues to the state, something that we view as an unnecessary complication
that obscures the finitary, combinatorial nature of the problem.

We are interested a computational problem which we call

BGP safety: given a BGP system as above, is it convergent?

Characterizing safety has been the main goal of the literature on BGP oscillations ([15, 18, 28, 21],
inter alia). In [14] only a necessary condition, and another sufficient one, for safety are given, both
NP-hard. We show below that the problem is PSPACE-complete.

One key observation is that the BGP convergence problem is actually one about Nash dynamics.
Starting with a BGP system B = ((G,E), λ), consider a game G[B] with a set V − {v0} of players,
each with a strategy set equal to the set of outgoing edges from it. Every pure strategy profile s
defines now a subgraph Gs of G with outdegree one for each player. The utility of v is then defined
as uv(s) = λv(π[v,Gs]), the value of the unique path from v to v0 in Gs, if such a path exists, and
λv(⊥) otherwise. We omit the tedious proof of the following:

Proposition 3.1 B is not convergent if and only if the strict Nash dynamics of G[B] has a sink
equilibrium of cardinality two or more (that is, one which is not a Nash equilibrium).

6

Hence, BGP safety amounts to telling whether there are non-Nash sink equilibria in the strict
Nash dynamics of the novel succinct game G[B]. The situation here is much more specialized than
with the graphical games proof in Section 2, and the proof of the following result is quite a bit more
sophisticated (and very different) than the proof of Theorem 2.2.

Theorem 3.2 BGP safety is PSPACE-complete.

Proof sketch: We start from the following computational problem:

string halting problem: Given a function f : Γt−2 7→ Γ ∪ {halt} for some alphabet Γ and integer
t > 2 (assume that the function is given as a Boolean circuit), is there an initial string T1 · · ·Tt ∈ ΓT

such that the following program halts? (Indices of T are understood modulo t, and T−(i,i+1) means
Ti+2Ti+3 · · ·Ti−1.)

1: i← 0
2: while f(T−(i,i+1)) 6= halt do

3: Ti ← f(T−(i,i+1))
4: i← i+ 1
5: end while

To show the string halting problem PSPACE-complete, we start, as in Theorem 2.2, from the
problem of telling whether a linear-bounded Turing machine will halt if started on n blanks. We
modify the Turing machine (in a way reminiscent of the construction in [13]) so that (1) it has a clock
that is “syntactically integrated” in its operation (meaning, it is easy to check whether a configuration
contains a legitimate clock state); (2) when the clock overflows, or if the machine is about to accept,
it erases the tape, zeroes the clock, and restarts; (3) if it rejects, it halts; (4) therefore, the machine
cycles if and only if it accepts the empty string. The details are messy and have to be done exactly
right (and are omitted here).

We conclude that it is PSPACE-complete to tell if a Turing machine (with embedded clock) will
cycle. The reduction from the cycling problem to string halting is not difficult, once it is clear
that f can recognize legitimate configurations (and halt in every other case).

Starting from such a function f , we use the BGP system shown in Figure 1 to simulate the
operation of the program above in such a way that, at any step, no more than 2 nodes are interested
in changing their path in a way that keeps the system “alive”, i.e. in a state from which it might still
loop (oscillate) indefinitely. The system can oscillate iff there exists a starting configuration from
which f never halts.

Given an instance I = (Γ, n, f), with |Γ| = s of string halting, we define the BGP system
B(I) = ((V,E), {λi}, where V = {Z,Ai, Bi, Ci,j|i ∈ N = {1, . . . , n}, j ∈ S = {1, . . . , s}} and E =
{(Ai, Z), (Ai, Bi), (Bi, Ci,j), (Ci,j , Ai−1)|i ∈ N, j ∈ S} (operations on “tape” indices are implicitly
modulo n). Z = v0 is the target node. Since Ci,j’s have only one outgoing link, they never update.
Bi’s path choices, i.e. its preference function, λBi , implements f , while λAi is set up to assure that
updates happen in clockwise (increasing i) order.

Let T (tx, . . . , ty) be shorthand for the path segment:

(Cx,tx , Ax−1, Bx−1, Cx−1,tx−1 , . . . , By, Cy,ty−1)

Note the reverse order of the tape indices. We can now define the preference functions by:

7

A
1

C
2,1

...

...

...

B
1

A
n

A
n−1

B
n

A
2 B

2

B
3

3
A

B
4

C
1,1

C
3,1

C
4,1

2,
C

s

...

3,
C

s

4,
C

s

1,
C

s

C
n,1

...

C
n,s

4
A

Z

Figure 1: A BGP gadget to simulate string halting.

λBi(P) =

4 if P = (Bi,T (ti, . . . , ti+1), Ai, Z) ∧ f(ti+2, . . . , ti−1) = ti

1 if P = (Bi,T (ti, . . . , ti+1), Ai, Z) ∧ f(ti+2, . . . , ti−1) 6= ti

0 if P = ⊥
2 else

λAi(P) =

3 if P = (Ai, Z)

1 if P = (Ai, Bi, Ci,j , Ai−1, Z)

1 if P = (Ai, Bi,T (ti, . . . , ti+2), Ai+1, Z) ∧ f(ti+2, . . . , ti−1) ∈ {tj 6=i,halt}
4 if P = (Ai, Bi,T (ti, . . . , ti+2), Ai+1, Z) ∧ f(ti+2, . . . , ti−1) = ti

0 if P = ⊥
2 else

We call a state “alive” if either (a) exactly one Ai has ν(Ai) = Z, or (b) only ν(Ai+1) and ν(Ai)
are Z and ν(Bi) = Ci,f(T−(i,i+1)), with f not returning “halt”.

If a state is not alive, we can inductively show that no Bj will ever again have an incentive to
switch (since it will never have a “clear view” to Ai) and no Aj will ever have an incentive to switch
from Z to Bj , so any fair activation sequence will lead to all Aj’s switching to Z, creating a stable
configuration.

If a state is alive, its ν(Bj)’s correspond to a configuration of f ’s tape, with the loop at cell i.
Inductively, after any activation sequence (a1, . . . , ax), we see that the system can only be in one

of these types of live states as it simulates f :

8

1. For all j 6= i, ν(Aj) = Bj, ν(Bj) = Ci,Tj
; ν(Ai) = Z, and ν(Bi) = Ci,f(T−(i,i+1)). Only Aj for

j 6∈ {i, i − 1} are dissatisfied. Updating Ai+1 yields state type 3; updating any of the others
creates a dead state.

2. For all j 6= i, ν(Aj) = Bj, ν(Bj) = Ci,Tj
; ν(Ai) = Z, and ν(Bi) 6= Ci,f(T−(i,i+1)). Only Aj for

j 6∈ {i, i − 1} and Bi are dissatisfied. Updating Bi yields state type 1. Updating any of the
Aj ’s yields a dead state.

3. For all j 6∈ {i, i + 1}, ν(Aj) = Bj , ν(Bj) = Ci,Tj
; ν(Ai) = ν(Ai+1) = Z, and ν(Bi) =

Ci,f(T−(i,i+1)), with f not returning “halt”. Only Aj , j 6= i + 1 are dissatisfied. Updating Ai

“advances” the simulation of C to the next step, and updates to state type 2, or, if the next
step of C doesn’t change the cell value, 1. Updating any of the other Aj ’s yields a dead state.

Thus, if I does not halt, the activation sequence (B1, A2, A1, B2, A3, . . .) will make this system
cycle between states 2, 1, and 3 (perhaps occasionally skipping 2 in the sequence when a type-3 state
updates directly to type-1). If I does halt, a fair activation sequence will force the system to enter
a dead and then reach a stable state in finite time. With the λ’s clearly succinctly representable, we
have that BGP safety is PSPACE-complete.

The above setup relies on Bj’s maintaining their state by having their preference function remain
“indifferent” when the “tape head” (the Ai-to-Z link) is elsewhere; this is the sole element above
that ever requires “ties for first place” in the preference functions, which BGP disallows. We can
eliminate this by introducing an extra state Di for each Bi, with links from Bi to Di and from Di

directly to Z. By setting Bi’s preference function to 3 for (Bi,Di, Z), and making Ai and Bj 6=i dislike
paths through Di, we would introduce another category of dead states, with the same implications
of forthcoming termination as above. We omit here the details of the proof that the reduction still
works.

4 Unit Recall Equilibria

Sink equilibria restrict the strategic behavior by players to myopic local improvement. On the other
hand, unrestricted strategic play on the states is a very involved subject [26]. The following is an
interesting compromise between the two extremes, a minimal instance of bounded-recall games as
studied by the game theory community [22, 2]:

Fix a game. A unit recall strategy by player i is a finite state automaton that has Si as its
state space and S−i as its alphabet. It specifies a starting strategy, and a next strategy for every
combination of plays by the other players. Notice that, assuming that the players act synchronously,
a set of unit recall strategies, one for each player, defines a function from S to itself, as well as a
start state, and thus an infinite walk from the start state ending up in a cycle. The payoff of this
combination of automata is then the average utility in this cycle.

Notice that the above concepts allow us to define, for each game, a game by the same players
whose strategies are unit recall strategies. The pure Nash equilibria of this game are called unit recall
equilibria. It would be very exciting if every game had a unit recall equilibrium. Unfortunately, this
is not the case. The following can be proved by exhaustion:

Proposition 4.1 The game of matching pennies (with n = 2, S1 = S2 = {0, 1}, and ui(a, b) =
(−1)i+a+b mod 2) has no unit recall equilibria.

9

However, unit-recall equilibria are still common. Take a random 2-player m × m normal-form
game. Pure Nash equilibria are known to exist with probability approaching 1− 1/e as the number
of strategies tends to infinity [12]. The probability of a URE existing, however, approaches 1:

Theorem 4.2 A m×m bimatrix game with payoffs chosen independently from an arbitrary distri-
bution, the probability that a unit recall equilibrium exists and can be found in polynomial time is at
least 1− 1/Θ(

√
m).

Proof sketch: We show that a particular kind of URE exists w.h.p.: a simple URE in a bimatrix
game with payoff matrices (R,C) is a pair of starting strategies (r, c) and a pair of a “punishment
column” cp 6= c and “punishment row” rp 6= r for the row and the column player, respectively, such
that Rk,cp

≤ Rr,c and Crp,k ≤ Cr,c for all k. The unit-recall strategies are set so that, from (r, c),
both players continue playing the same strategy, and from any other state, the row player defects to
rp to punish the column player, and vice versa. Such equilibria can be found in polynomial time by
exhaustion.

Set, with foresight, f(m) = 1
4m logm, and pick the top f(m) entries from all of R, and the top

f(m) entries from all of C (break ties uniformly at random). Let IR and IC be 0-1 matrices which
have 1’s wherever those top f(m) entries occur, and 0 elsewhere. For a simple URE to exist, it is
sufficient to have (i) event M : there exist (r, c) such IR

r,c = IC
r,c = 1, and (ii) event P : there exist

some rp and cp such that IR
k,cp

and IC
rp,k are 0 for all k.

Since the entries of R and C are chosen independently, IR and IC are chosen uniformly at random
from the set of 0-1 m ×m matrices with exactly f(m) 1’s. A simple combinatorial argument gives

Pr[M] ≤ 1/m
1
16

log m. With some algebra, we can apply the Chebyshev bound to the number of
empty columns (rows) of R (C) to get Pr[P] ≤ 4/

√
m, so, asymptotically, Pr[simple URE exists] ≥

1−1/Θ(
√
m). We expect that a tighter analysis of Pr[P] will tighten the result to 1−1/superpoly(m).

How difficult is then the problem unit recall equilibrium (given a game, find a unit recall
equilibrium)? Though the problem is prima facie a non-trivial member of Σ2P , the answer is, “not
quite that difficult”:

Theorem 4.3 There is a polynomial algorithm which, given an n-player game and unit recall strate-
gies for n− 1 players, calculates the best response by the nth player. Therefore, unit recall equi-
librium is in NP.

Proof sketch: The n − 1 given unit recall strategies specify a function φ from S to S−i. Define
a graph with vertex set S and edges {(s, (φ(s), a)) : s ∈ S, a ∈ Si}, and assign to each state s the
weight ui(s). It is not hard to see that the best response is determined by the cycle in this graph
that has the highest average weight, a problem solvable in polynomial time [16].

Conjecture 4.4 Unit recall equilibrium is in P.

Let us now weaken this equilibrium concept. A unit recall equilibrium requires that, for each
player, there is no way to change some subset of its transitions so that an improvement results. But
suppose now that we only require that no improvement result by changing any one of the transitions.
This could be a reasonable relaxation, if one assumes that transitions in the automaton get changed
slowly and sequentially, and that lower utility will prevent a player from even starting the defection
process. We call this weaker notion componentwise unit recall equilibrium, or CURE.

10

Theorem 4.5 Every game has a CURE, which can be found in polynomial time, given a normal-
form game.

Proof sketch: Discard any players with only one choice of strategy. Let m = mini |Si| ≥ 2 and
M = maxi |Si|. We’ll give the proof that works when n ≥ 7 or m ≥ 3.

Consider an n-player game (n ≥ 2), and a state s. We say that s is i-punishable if there is another
state s(i), differing from s in the strategy of two or more players, such that ui(s(i)) ≤ ui(s). We call
a state s punishable if it is i-punishable for all players i. The following is proven in the appendix:

Lemma 4.6 Every game with 7 or more players, or with every player having 3 or more strategies,
has a punishable state.

Now, given a punishable state s, we shall construct n unit recall strategies, one for each player,
which, we shall argue, form a CURE. We shall describe these strategies implicitly, by the function ψ
from S to itself that they induce. This function starts at s, and it maps s to itself. For each player
i, any state s′ such that s−i = s′−i is mapped to the state s(i) guaranteed to exist by i-punishability.
All other states are mapped to themselves, and this concludes the description of the CURE.

To verify that s is a CURE, notice that, since the play is on s alone, only changes of the transition
for s by a player could possibly lead to disequilibrium. However, if player i defects from si, the play
will move to a state s′ with s−i = s′−i, and then immediately to s(i) where it stays forever, thus failing

to improve i’s utility (by the assumption that ui(s(i) ≤ ui(s). This completes the proof of existence.
In a normal-form game, a punishable state can be found by exhaustion.
Some geometric arguments, omitted here, extend the lemma to guarantee a punishable state for

all games except 2 × 2, 2 × 2 × 2, 2 × 2 × 3, and 2 × 2 × 2 × 2 games. The finite corner cases are
handled by tweaking the “punishable state” approach.

We are not claiming that the equilibria guaranteed to exist by this result are in any sense natural.
State s is supported, for each player i, by both “threats” by other players (their transitions from s′

to s(i) and the persistence in s(i)) and by what is essentially a commitment by player i to collaborate
with the other players in punishing itself if it ever deviates from playing s. Still, besides correlated
equilibria, CUREs in normal-form games are the only equilibrium concepts we know that are both
tractable and universal.

5 Open Problems

We believe that sink equilibria are intractable in other general situations as well, for example in
congestion games (with large, splitable flows), and in valid utility games (it has been shown in [11]
that a special case thereof already produces PLS-completeness, and we expect that the whole story
is much bleaker).

The sink equilibria concept remains one important direction to explore in our search for equilibria.
It would be interesting to consider strategic enhancements of this concept, besides the unit recall idea
offered here, in line with the realities of the Internet: Asynchronous players with different reaction
speeds whose move depends not on the state, but on a rough (and perhaps delayed. . .) estimate of
their utility.

Finally, can our complexity result on BGP oscillations be extended to the case in which the
utilities are given explicitly as a preference order of paths? We cannot see how to prove this, but we
expect that this problem is, indeed, also PSPACE-complete.

11

Acknowledgements

We’d like to thank Vijay Ramachandran and Robert Kleinberg for stimulating discussions.

References

[1] R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1):67–96, March 1974.

[2] R. J. Aumann. Survey of repeated games. In Collected papers, pages 411–438. MIT Press, 2000.

[3] E. Ben-Sasson, A. Kalai, and E. Kalai. An approach to bounded rationality. In Proceedings of
NIPS 2006.

[4] X. Chen and X. Deng. Settling the complexity of 2-player Nash equilibrium. In Proceedings of
IEEE FOCS 2006, pages 261–270.

[5] X. Chen, X. Deng, and S.-H. Teng. Computing Nash equilibria: Approximation and smoothed
complexity. In Proceedings of IEEE FOCS 2006, pages 603–612.

[6] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a Nash equi-
librium. In Proceedings of ACM STOC 2006, pages 71–78.

[7] C. Daskalakis, A. Mehta, and C. Papadimitriou. A note on approximate Nash equilibria. In
Proceedings of WINE 2006.

[8] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure Nash equilibria. In
Proceedings of ACM STOC 2004, pages 604–612.

[9] T. Feder, H. Nazerzadeh, and A. Saberi. Breaking the factor of two in approximate Nash
equilibria. Manuscript.

[10] E. J. Friedman and S. Shenker. Learning and implementation on the Internet. Work-
ing paper 1998-21, Rutgers Univ., Dept. of Economics, 1998. Available from http://www-
snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html.

[11] M. Goemans, V. Mirrokni, and A. Vetta. Sink equilibria and convergence. In Proceedings of
IEEE FOCS 2005, pages 142–151.

[12] K. Goldberg, A. J. Goldman, and M. Newman. The probability of an equilibrium point. J. Res.
Nat. Bur. Standards Sect., 72B:93–101, 1968.

[13] P. Gopalan, P. Kolaitis, E. Maneva, and C. H. Papadimitriou. The connectivity of boolean
satisfiability: Computational and structural dichotomies. In Proceedings of ICALP 2006, pages
346–357.

[14] T. Griffin, F. Shepherd, and G. Wilfong. The stable paths problem and interdomain routing.
IEEE/ACM Transactions on Networking, 10(2):232–243, 2002.

[15] T. G. Griffin and G. Wilfong. An analysis of BGP convergence properties. In Proceedings of
ACM SIGCOMM 1997, pages 277–288.

12

[16] R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics,
23:309–311, 1978.

[17] S. Kontogiannis, P. Panagopoulou, and P. Spirakis. Polynomial algorithms for approximating
Nash equilibria of bimatrix games. In Proceedings of WINE 2006.

[18] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing instability. IEEE/ACM Trans. on
Networking, 6:515–528, 1998.

[19] R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In
Proceedings of ACM EC 2003, pages 36–41.

[20] M. L. Littman and P. Stone. A polynomial-time Nash equilibrium algorithm for repeated games.
In Proceedings of ACM EC 2003, pages 48–54.

[21] D. McPherson, V. Gill, D. Walton, and A. Retana. BGP persistent route oscillation condition.
In Proceedings of 50th IETF, March 2001.

[22] A. Neyman. Bounded complexity justifies cooperation in the finitely repeated prisoners’
dilemma. Economics Letters, 19(3):227–229, 1985.

[23] C. H. Papadimitriou. Computing correlated equilibria in multi-player games. In Proceedings of
ACM STOC 2005, pages 49–56.

[24] C. H. Papadimitriou and M. Yannakakis. On complexity as bounded rationality. In Proceedings
of ACM STOC 1994, pages 726–733.

[25] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771 (Draft Standard),
1995.

[26] S. Sorin. Cooperation through repetition. In S. Hart and A. M. Colell, editors, Cooperation:
Game Theoretic Approaches, pages 169–198. Springer, 1997.

[27] J. W. Stewart. BGP4: Inter-Domain Routing on the Internet. Addison-Wesley, 1998.

[28] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations in inter-domain routing.
Technical Report 96-631, USC ISI, 1996.

13

A Proof of Theorem 2.2

Formally, let an LRCM be a tuple of a state space, a designated starting state, a tape alphabet, the
length of its circular tape, and a transition function mapping the machine state and the contents of
tape cells i−2, i−1, and i+2, where i is the current tape cell, to the new state and the new content
of the current cell, or a “halt” command: C = (Q, q0 ∈ Q,Γ, t, f : Q× Γ3 → (Q× Γ) ∪ {halt}) (we’ll
use (fq, fT) for components of f ’s output). We require LRCMs to obey two additional semantic
constraints:

1. (Resetting constraint) When started on a blank tape, it must either halt or return to the same
configuration (state q0 and a blank tape) in finite time.

2. (Self-loop-free constraint) There may not be any self-loops in the finite-state control, i.e. when-
ever f(q, . . .) = (q′, . . .), q 6= q′.

C is said to halt on starting tape state (T0, . . . , Tt) ∈ Γt if the following loop halts (using TN(i)

as shorthand for (Ti−2, Ti−1, Ti+2)):

1: i← 0
2: while f(q, TN(i)) 6= halt do

3: (q, Ti)← f(q, TN(i))
4: i← i+ 1
5: end while

Lemma A.1 It is PSPACE-complete to tell whether an LRCM C will halt on a starting tape state.

Proof:

We start with the generic PSPACE-complete problem, the space-bounded halting problem for
TMs. We first reduce an instance of this problem (a Turing machine M , an input x, and a tape
bound t), to the halting problem for a TM variant M ′ = (Q′,Σ′,Γ′, δ′, q′0, q

′
a, q

′
r), with a circular tape

of length t′ which, independently of its own input, simulates M on x with space bound t and halts iff
M accepts. Additionally, we use t log |Q| extra cells of the tape to store a step counter that counts
up to the total number of possible configurations of M , and, when the counter overflows, have the
machine enter a special state which forces the entire tape, including the counter, to be reset to blank,
moves the tape head to the starting position, and sets the control to q0.

To map M ′ to a LRCM, we:

• simulate bidirectional movement by making the CM do an “idle round” around the tape after
each step of M ′

• store the direction of tape movement in the state during the idle round

• remove the transition function’s dependence on the current tape cell by storing a copy of cell
i’s contents in cell i+ 2

• double the state space by adding a “flip-flop” component which flips at each step to ensure the
absence of control self-loops

14

Formally, let Γ′′ = Γ′ × Γ′ × {0, 1} × {0, 1} and Q′′ = Q′ × {±1} × {active, idle} × {0, 1}. Use
Ti = (T t

i , T
c
i , T

l
i , T

cl
i) for the “this cell”, “copy of cell i − 2”, “last-change bit”, and “copy of i − 2’s

last-change bit” components of Ti; and q = (qq, qd, qi, qf) for “state”, “direction of movement”, “idle
indicator”, and “flip-flop” components of the state q.

Then, let f be the following:

1: if qi = active then

2: (q̃q, T̃ t, q̃d)← δ′t(q
q, T c

i+2) // “action step”
3: if q̃q ∈ {q′a, q′r} then

4: return halt
5: end if

6: T̃ l ← 1 ; q̃i = idle
7: else

8: T̃ l ← 0 ; T̃ t ← T c
i+2 ; q̃q,d ← qq,d // “idle step”

9: if T l
i+2 = 1 ∧ qd = −1 or T cl

i+2 = 1 ∧ qd = +1 then

10: q̃i = active // prepare to write in next cell
11: end if

12: end if

13: T̃ c,cl ← T t,l
i−2 ; q̃f ← ¬qf

14: return (q̃, T̃)

As above, we claim that if we start LRCM C = (Q′′, (q′0, active,+1, 0),Γ′′, t′ ≥ 3, f) on tape
Ti = (, 0, , 0) ∀i, it will halt iff M ′ halts, and otherwise will eventually return to state q0 and the
starting tape state, with each step of M ′ getting simulated by an action step of C.

An induction on the steps of C shows that, at the beginning of any step of C at cell i:

• T c,cl
k+2 = T t,l

k for at least all k other than i− 1 and i− 2.

• C’s state is one of the following 4 configurations:

1. Exactly 1 last-change bit T l
k is on, qi = idle. If k = i + 1 or k = i, qd may only be +1.

Corresponds to M ′ having just written to tape cell k, switched the state to qq, and about
to move in direction qd

2. Only T l
i+1 is on, qi = active, qd = −1. Same M ′ state as in 1 above.

3. Only T l
i−1 and T l

i are on, qi = idle. Corresponds to M ′ having just written to i − 1,
switched to state qq, about to move by qd (having moved by −1 on the previous step).

4. No last-change bit T l
k is on, qi = active, qd = +1. Corresponds to M ′ having just written

to i− 1, switched to state qq, and about to move by +1.

• Each step of C which starts with qi = active changes the state qq and the sequence {T t
j } to

match the state and tape contents of the next step of M ′’s computation, hence causing C to
halt iff M ′ halts.

Allowing a succinct representation of f as above, the reduction is clearly polynomial, hence
yielding PSPACE-completeness.

Our reduction from an LRCM C = (Q, q0,Γ, t, f) and starting tape T will create a game G
which, for each tape cell i, has a “cell” player Ci and a “state” player Si, with the utilities of both

15

Figure 2: A segment of a graphical game gadget to simulate an LRCM.

depending on several nearby Cj and Sj players. We will arrange G so that its Nash dynamics follow
the computation of C, with no players ever given an incentive to deviate from “canonical” game states,
i.e. those that directly correspond to a configuration of C. Thus, the game state corresponding to
the starting state of the LRCM will be in a sink equilibrium if and only if the LRCM does not halt.

The dependencies in the game follow the pattern in Figure 2. Ci players are shown as circles and
Si — as diamonds. The black links show the dependencies for a one pair of Ci and Si nodes. The
same pattern of links repeats for all t pairs of players (Cj , Sj), which are arranged in a closed loop.

The strategy set for each Ci is just Γ; the strategy set for Si is Q ∪ {∅}. The utility function for
Si depends on the strategies of Ci−3, Ci−2, Ci−1, Ci+1, Ci+2, Si−3, Si−2, Si−1, Si+1, Si+2, and itself;
and that for Ci — on Ci−2, Ci−1, Ci+2, Si−2, Si−1, Si, and itself. We set the utility function for Si

according to the rules in Table 1.

Ci−3 Ci−2 Ci−1 Ci+1 Ci+2 Si−3 Si−2 Si−1 Si+1 Si+2 Si uSi

* * * * * ∅ ∅ q1 q2 ∅ q2 1
else 0

V W fT (q1, V, W,Y) Y * ∅ q1 q2 6= q1 ∅ ∅ q2 1
else 0

* W X * Z ∅ ∅ q1 ∅ ∅ fq(q1, W,X, Z) 6= halt 1
else 0

* * * * * ∅ ∅ ∅ q1 ∅ * 0

else
∅ 1

else 0

Table 1: The utility function for Si. Asterisks indicate don’t-cares, q1 and q2 are arbitrary elements
of Q (i.e. not ∅), and V,W,X, Y,Z are arbitrary elements of Γ.

For Ci, we set uCi(Ci−2, Ci−1, Ci, Ci+2, Si−2, Si−1, Si) to 1 iff Si−2 = ∅, ∅ 6= Si 6= Si−1 6= ∅, and
Ci = fT (Si−1, Ci−2, Ci−1, Ci+2). For any other configuration of strategies, we set it to 0.

We start the game G with the tape players Ci playing the contents of the C’s starting tape, S0

and S−1 playing q0, and all the other Si’s playing ∅. This puts the game state in “phase” (iv) as

16

phase C... Ci−3 Ci−2 Ci−1 Ci Ci+1 Ci+2 Ci+3 C...

S... Si−3 Si−2 Si−1 Si Si+1 Si+2 Si+3 S...

(i)
· · · A B C D E F G · · ·
∅ ∅ ∅ a b ∅ ∅ ∅ ∅

(ii)
· · · A B C H E F G · · ·
∅ ∅ ∅ a b ∅ ∅ ∅ ∅

(iii)
· · · A B C H E F G · · ·
∅ ∅ ∅ a b b ∅ ∅ ∅

(iv)
· · · A B C H E F G · · ·
∅ ∅ ∅ ∅ b b ∅ ∅ ∅

(i)
· · · A B C H E F G · · ·
∅ ∅ ∅ ∅ b c ∅ ∅ ∅

Table 2: Canonical states of G. Capital letters are tape symbols in Γ, lower-case letters are states in
Q. H = fT (a,B,C,E), c = fq(b, C,H,F)

shown in Table 2. By induction, it can be seen that, given that starting configuration:

• at each step of the Nash dynamics, the game state is in one of the four phases listed in the
table,

• only the player whose strategy is marked by a square may have an incentive to deviate, and

• the game will cycle through states in phases (i)-(iv), simulating the computation of C, unless
and until C halts, at which point the game will be in a pure Nash equilibrium.

Due to the resetting constraint on C, if C does not halt, G must return to its starting state after
a finite number of steps. Since no other players have an incentive to deviate at any step, this cycle
in G’s state space forms a sink equilibrium. Conversely, if C does halt, there is a path from the
starting configuration to the pure Nash equilibrium corresponding to the halted computation of C,
thus assuring that the starting state of G is not part of a sink equilibrium.

Since the degree of G’s graph is 10, we thus have that in a sink is PSPACE-complete.

B Proof of Lemma 4.6

The proof proceeds by a counting argument. For each player i, pick any s from the set arg mins ui(s)
to be s(i). For each such state, there are

∑

i |Si| − n + 1 states that differ from it in at most one
player’s strategy. Via the union bound, the number of punishable states must be at least:

∏

i

|Si| − n
(

∑

i

|Si| − n+ 1
)

>
∏

i

|Si| − n
∑

i

|Si| ≥Mmn−1 − n2M

Since M > 0, this is non-negative (guaranteeing at least one punishable state) whenever n ≥ 2 and

m ≥ 7 and whenever n ≥ 3 and m ≥ 3. For n = 2 and m = 3, just set si 6∈ {s(1)i , s
(2)
i }.

17

