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Abstract. We propose a plausible explanation of the power law distri-
butions of degrees observed in the graphs arising in the Internet topology
[Faloutsos, Faloutsos, and Faloutsos, SIGCOMM 1999] based on a toy
model of Internet growth in which two objectives are optimized simulta-
neously: “last mile” connection costs, and transmission delays measured
in hops. We also point out a similar phenomenon, anticipated in [Carl-
son and Doyle, Physics Review E 1999], in the distribution of file sizes.
Our results seem to suggest that power laws tend to arise as a result of
complex, multi-objective optimization.

1 Introduction

It was observed in [5] that the degrees of the Internet graph (both the graph of
routers and that of autonomous systems) obey a sharp power law. This means
that the distribution of the degrees is such that the probability that a degree
is larger than D is about cD−β for some constant c and β > 0 (they observe
βs between 2.15 and 2.48 for various graphs and years). They go on to observe
similar distributions in Internet-related quantities such as the number of hops
per message, and, even more mysteriously, the largest eigenvalues of the Internet
graph. This observation has led to a revision of the graph generation models
used in the networking community [14], among other important implications.
To date, there has been no theoretical model of Internet growth that predicts
this phenomenon. Notice that such distributions are incompatible with random
graphs in the Gn,p model and the law of large numbers, which yield exponential
distributions.
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Power laws have been observed over the past century in income distribution
[13], city populations [15,6], word frequencies [10], and literally hundreds of other
domains including, most notably, the degrees of the world-wide web graph [9];
they have been termed “the signature of human activity” (even though they do
occasionally arise in nature)1. There have been several attempts to explain power
laws by so-called generative models (see [12] for a technical survey). The vast
majority of such models fall into one large category (with important differences
and considerable technical difficulties, of course) that can be termed scale-free
growth or preferential attachment (or, more playfully, “the rich get richer”). That
is, if the growth of individuals in a population follows a stochastic process that
is independent of the individual’s size (so that larger individuals attract more
growth), then a power law will result (see, from among dozens of examples, [6]
for an elegant argument in the domain of city populations, and [8] for a twist
involving copying in the world-wide web, crucial for explaining some additional
peculiarities of the web graph, such as the abundance of small bipartite graphs).

Highly optimized tolerance (HOT, [2]) is perhaps the other major class of
models predicting power laws. In HOT models, power laws are thought to be
the result of optimal yet reliable design in the presence of a certain hazard.
In a typical example, the power law observed in the distribution of the size of
forest fires is attributed to the firebreaks, cleverly distributed and optimized over
time so as to minimize the risk of uncontrolled spread of fire. The authors of [2]
refer briefly to the Internet topology and usage, and opine that the power law
phenomena there are also due to the survivability built in the Internet and its
protocols (whereas it is well known that this aspect of the Internet has not had
a significant influence on its development beyond the very beginning [3]).

In this paper we propose a simple and primitive model of Internet growth, and
prove that, under very general assumptions and parameter values, it results in
power-law-distributed degrees. By “power law” we mean here that the probability
that a degree is larger than d is at least d−β for some β > 0. In other words,
we do not pursue here sharp convergence results à la [8,4,1], content to bound
the distribution away from exponential ones. Extensive experiments suggest that
much stronger results actually hold.

In our model a tree is built as nodes arrive uniformly at random in the unit
square (the shape is, as usual, inconsequential). When the i-th node arrives,
it attaches itself on one of the previous nodes. But which one? One intuitive
objective to minimize is the Euclidean distance between the two nodes. But a
newly arrived node plausibly also wants to connect to a node in the tree that
is “centrally located”, that is, its hop distance (graph theoretic distance with
edge lengths ignored) to the other nodes is as small as possible. The former
objective captures the “last mile” costs, the latter the operation costs due to
communication delays. Node i attaches itself to the node j that minimizes the
weighted sum of the two objectives:

minj<iα · dij + hj ,
1 They are certainly the product of one particular kind of human activity: looking for
power laws. . .
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where dij is the Euclidean distance, and hj is some measure of the “centrality”
of node j, such as (a) the average number of hops from other nodes; (b) the
maximum number of hops from another node; (c) the number of hops from a
fixed center of the tree; our experiments show that all three measures result
in similar power laws, even though we only prove it for (c). α is a parameter,
best thought as a function of the final number n of points, gauging the relative
importance of the two objectives.

We are not claiming, of course, that this process is an accurate model of
the way the Internet grows. But we believe it is interesting that a simple and
primitive model of this form leads to power law phenomena. Our model attempts
to capture in a simple way the trade-offs that are inherent in networking, but also
in all complex human activity (arguably, such trade-offs are key manifestations
of the aforementioned complexity).

The behavior of the model depends crucially on the value of α, and our
main result (Theorem 1) fathoms this dependency: If α is less than a particular
constant depending on the shape of the region, then Euclidean distances are not
important, and the resulting network is easily seen to be a star —the ultimate in
degree concentration, and, depending on how you look at it, the exact opposite,
or absurd extreme, of a power law. If α grows at least as fast as

√
n, where n is the

final number of points, then Euclidean distance becomes too important, and the
resulting graph is a dynamic version of the Euclidean minimum spanning tree, in
which high degrees do occur, but with exponentially vanishing probability (our
proof of this case is a geometric argument). Again, no power law. If, however,
α is anywhere in between — is larger than a certain constant, but grows slower
than

√
n if at all — then, almost certainly, the degrees obey a power law. This

part is proved by a combinatorial-geometric argument, in which we show that for
any value for the desired degree, there are likely to be enough nodes with large
enough “regions of influence,” disjoint from one another, such that any future
node falling into this region is certain to have an edge to the given node. Our
technique proves a lower bound of β = 1

6 for α = o(n1/3) (and smaller bounds
for α = o(

√
n)), while our experiments (see Section 2.2) suggest that the true

value is around 0.6-0.9.

In Section 3 we prove a result in a different but not unrelated domain: we
present a simple (näıve is more accurate) model of file creation, inspired by [2],
and prove that it predicts a power law in the distribution of file sizes under very
broad assumptions. The model is this: We have a set of n data items, all of the
same size, that we must partition into files. The i-th item has popularity pi —
say, the expected number of times it will be retrieved for Internet transmission
each day. We want to partition the items into files so that the following two
objectives are minimized (a) total transmission costs (the sum over all partitions
of the product of the partition size times the total partition popularity), and (b)
the total number of files. It is easy to see that the optimum partition will include
items in sorted order of popularity, and can be found by dynamic programming.
We show that, when the popularities are i.i.d. from any one of a large class
of distributions (encompassing the uniform, exponential, Gaussian, power law,
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etc. distributions), then the optimum file sizes are, almost surely, power-law
distributed. The technical requirement on the distribution from which the pi’s are
drawn is essentially that the cumulative distribution Φ do not start exponentially
slow at zero (see Theorem 2). The authors of [2] propose a similar model, and
make an observation in the same direction: They consider a few examples of
distributions of the pi’s (not distributions from which they are drawn, as in our
model, but distributions of the drawn samples) and for these they point out that
the file sizes obey a power law.

Our results seem to suggest that power laws are perhaps the manifestation
of trade-offs, complicated optimization problems with multiple and conflicting
objectives — arguably one of the hallmarks of advanced technology, society, and
life. Our framework generalizes the HOT class of models proposed in [2], in the
sense that HOT models are the trade-offs in which reliable design is one of the
objectives being optimized.

As it turns out, within our proposed conceptual framework also lies a classical
and beautiful model by Mandelbrot [10]. Suppose that you want to design the
optimum language, that is, the optimum set of frequencies f1 ≤ f2 ≤ . . . ≤ fn

assigned to n words. The length of the i-th word is presumably log i. You
want to maximize the information transmitted, which is the entropy of the fi’s
(−∑

fi log fi), divided by the expected transmission cost,
∑
fi log i. The fre-

quencies that achieve the optimum: a power law! Mandelbrot’s multi-objective
optimization differs from our two examples in that of his two objectives one is
minimized and the other maximized; hence he considers their ratio, instead of
their weighted sum (the two are obviously related by Lagrange multipliers).

2 A Model of Internet Growth

2.1 The Main Result

Consider a sequence of points p0, p1, . . . , pn in the unit square, distributed uni-
formly at random. We shall define a sequence of undirected trees T0, T1, . . . on
these points, with T0 the tree consisting of p0. Define hi to be the number of
hops from pi to p0 in Ti, and dij the Euclidean distance between points i2 and
j. Let α be a fixed number (we allow it though to be a function of n). Then Ti

is defined as Ti−1 with the point i and the edge [i, j] added, where j < i mini-
mizes fi(j) = αdij +hj . Let T = Tn. We will denote by Nk(i) the neighborhood
{j|[i, j] ∈ Tk} of i in Tk; similarly, N(i) will denote the neighborhood of i in T .

Theorem 1. If T is generated as above, then:

(1) If α < 1/
√

2, then T is a star with p0 as its center.
(2) If α = Ω(

√
n), then the degree distribution of T is exponential, that is, the

expected number of nodes that have degree at least D is at most n2 exp(−cD)
for some constant c: E [ |{i : degree of i ≥ D}| ] < n2 exp(−cD).

2 pi and “point i” are used interchangeably throughout
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(3) If α ≥ 4 and α = o(
√
n), then the degree distribution of T is a power law;

specifically, the expected number of nodes with degree at least D is greater
than c · (D/n)−β for some constants c and β (that may depend on α):
E [ |{i : degree of i ≥ D}| ] > c(D/n)−β. Specifically, for α = o( 3

√
n1−ε) the

constants are: β ≥ 1/6 and c = O(α−1/2).

Proof. We prove each case separately. The proof of the third case is the more
involved.

(1) The first case follows immediately from the objective function; since dij <
√

2
for all i, j, and hj ≥ 1 for all j 
= 0, fi(0) < 1 ≤ fi(j) for j 
= 0, so every node
pi will link to p0, creating a star.

(2) To obtain the exponential bound for (2), we consider the degree of any point
pi as consisting of 2 components — one due to geometrically “short” links, S(i) =
|{j ∈ N(i) | dij ≤ 4

α}|, and one due to “long” links, L(i) = |{j ∈ N(i) | dij >
4
α}|.

By the union bound, Pr[degreei ≥ D] ≤ Pr[S(i) ≥ D/2] + Pr[L(i) ≥ D/2].
For a fixed i and α ≥ c0

√
n), any points contributing to S(i) must fall into a

circle of area 16πα−2 ≤ πc0
−2n−1. Thus, S(i) is (bounded by) a sum of Bernoulli

trials, with E[S(i)] = 16πα−2n < c for a constant c depending only on c0. By
the Chernoff-Hoeffding bound, for D > 3c, Pr[S(i) > D/2] ≤ exp(− (D−2c)2

D+4c ) ≤
exp(−D/21).

For the other component, define Lx(i) = |{j ∈ N(i) | dij ∈ [x, 32x]}| (the
number of points attached to i in a distance between x and 3

2x from point i).
We will first show that Lx(i) < 14 for any x ≥ 4

α . Indeed a geometric argument
shows if points pj and pj′ , j < j′, are both between x and 3

2x away from pi, then
pj′ would prefer pj over pi whenever |∠pjpipj′ | < c = cos−1(43/48) (see Figure
1); the bound on the angle would force αdij′ > αdjj′ +1 while |hj −hi| ≤ 1. Since

c > 2π
14 , Lx(i) < 14. We now bound L(i) as follows: L(i) =

∑− log 3
2

δi

k=1 L
( 32 )

−k
(i) ≤

−14 log 3
2
δi where δi is defined as max{ 4

α ,minj dij}. Since points are distributed

uniformly at random, Pr[δi ≤ y] ≤ 1 − (1 − πy2)(n−1) ≤ π(n− 1)y2. Therefore,
Pr[L(i) ≥ D/2] ≤ Pr[−14 log 3

2
δi ≥ D/2] ≤ π(n − 1)( 32 )−D/14, completing the

proof of (2).
It is worth noting that the only property used for this bound is |hj − hi| ≤ 1

for j ∈ N(i); this holds for a broad class of hop functions, including all 3 listed
in the introduction.

(3) To derive the power law in (3), we concentrate on points close to p0. While
experimental evidence suggests the presence of high-degree points contributing
to the power law throughout the area, the proof is rendered more tractable by
considering only points j ∈ N(0), with d0j ≤ 2/α. Without loss of generality,
we assume that p0 is located at least 2/α from the area boundary; the argument
carries over to cases where it is near border with only a slight change in C.
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j

Fig. 1. If u < cos−1(43/48) then point j′ prefers point j over point i because αdij′ >
αdjj′ + 1 for x ≥ 4/α.

First, we prove 2 lemmas for a point i which arrives so that i ∈ N(0) and
3
2α > di0 >

1
α . Let r(i) = di0 − 1

α .

Lemma 1. Every point arriving after i inside the circle of radius 1
4r(i) around

i will link to i.

Proof. Since i was linked to 0 on arrival, there was no j ∈ N(0) prior to its
arrival such that αdij +1 < αdi0, i.e. within distance r(i) from it. Also, if a point
j arrives after i so that dij <

1
2r(i), it will not link to 0, since by the triangle

inequality dj0 > 1/α+ 1
2r(i). Now, if a point j′ arrives after i so that dij′ < 1

4r(i),
it can’t be linked to 0; for all j ∈ N(0)\{i}, djj′ > 1

4r(i), so j′ would rather link
to i; and for all other j, hj ≥ 2, so fj′(j) ≥ 2, while fj′(i) ≤ α 1

4r(i) + 1 ≤ 9
8 .

Thus, any such point j′ will definitely link to i.

Lemma 2. No point j will link to i unless |∠pjp0pi| ≤ √
2.5αr(i) and dj0 ≥

1
2r(i) + 1/α.

Proof. Note that if fj(0) < fj(i), j will not link to i since i is not the opti-
mal choice. That constraint is equivalent to dj0 < dij + 1/α, which defines a
region outside the cusp around pi of a hyperbola with foci at p0 and pi and
major axis length 1/α. The asymptotes for this hyperbola each make an angle
of arctan

√
α2r(i)2 + 2αr(i) ≤ arctan

√
2.5αr(i) ≤ √

2.5αr(i) with the segment
p0pi, intersecting it at the midpoint m of p0pi. Since |∠pimx| ≥ |∠pip0x| for
any point x, this guarantees that any point pj inside the cusp around pi satisfies
|∠pjp0pi| ≤ √

2.5αr(i). The triangle inequality also guarantees that any such pj

will also satisfy dj0 ≥ 1
2r(i) + 1/α. Thus, any point not satisfying both of these

will not link to i.
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Lemma 1 provides a way for an appropriately positioned i ∈ N(0) to establish
a circular “region of influence” around itself so that any points landing there
afterward will contribute to the degree of that point. Since point placement
is independent and uniform, its exponentially unlikely that the circle will be
populated with much fewer points than the expected number, thus giving a
stochastic lower bound on deg i. We use Lemma 2 to lower-bound the number
of i ∈ N(0) with sufficiently large r(i). For a sketch of the geometrical features
of the proof, refer to Figure 2.

A
0

A’

A

Fig. 2. A hypothetical small window about 1/α from the root, of size on the order
of ρ2/3; figure not entirely to scale. Dotted contours indicate “regions of influence”
provided by Lemma 1; dashed contours indicate the “sector” areas defined by Lemma
2. Note that the latter may overlap, while the former cannot.

Here, we only treat the case for α = o( 3
√
n1−ε), which yields β = 1/6; the

case for α = o(
√
n) can be analyzed similarly, but with β approaching 0 as α

approaches Θ(
√
n.

For any ε > 0 and sufficiently high n, suppose α = o( 3
√
n1−2ε), and let

D ≤ n1−ε

256α3 . Set, with foresight, ρ = 4
√
D/n and m = � 1

2ρ
, and consider Tm.
Specifically, consider the sets of points in Tm falling within annuli A0, A, and
A′ around p0, with radius ranges [1/α, 1/α + ρ], (1/α + ρ, 1/α + ρ2/3], and
(1/α + ρ, 1/α + 0.5ρ2/3], respectively. By our choice of ρ, any j ∈ Nm(0) in A′

will have a region of influence of area at least πD/n, thus expected to contain
πD(n−m)/n > πD/2 points that link to j in T . By our choice of m, the number
of points expected to arrive in A0 is 1/α+ ρ/2 < 1

2 .
Consider any point i arriving to A′. It cannot link to any j with hj ≥ 2,

since fi(0) < 2 ≤ fi(j). By Lemma 2, it cannot link to any j ∈ N(0) outside the
outer radius of A. By triangle inequality, it cannot link to any j ∈ N(0) such
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that dj0 < 1/α (since di0 − dij < 1). Thus, it can only link to 0 or any j ∈ N(0)
that lies in A0 ∪A.

But, to link to a j ∈ N(0) which is in A0 ∪ A, i must, by Lemma 2 obey
|∠pip0pj | <

√
2.5αr(j) <

√
2.5αρ1/3. Thus, each time a new point arrives in

A0 ∪ A and links to N(0), it “claims” a sector of A′ of angle no larger than√
10αρ1/3; i.e. no point arriving outside that sector can link to j (note that we

disregard the constraint on dj0; it is not needed here). The number of points
in Tm expected to be in A′ is m(ρ2/3/α − 2ρ/α + 0.25ρ4/3 − ρ2) > 1/(4ρ1/3).
This can be cast as an occupancy problem by partitioning annulus A0 ∪ A into
N = 1/(8

√
αρ1/3) congruent sectors3 of angle 16π

√
αρ1/3 >

√
10αρ1/3. Each

partition is considered occupied if a point has landed in it or either of its adjacent
partitions and linked to p0, and, by the above argument, a point landing in the
intersection of an unoccupied partition and A′ will link to p0, so the number
of partitions occupied after m points arrive is at most 3|N(0) ∩ (A ∪ A0)|. By
the Chernoff bound, with probability at least p1 = 1 − exp(−N/8), at least
1/(8ρ1/3) points in Tm land in A′. Note that if a point lands in the intersection
of a partition and A′, that partition is definitely occupied, so:

p2 = Pr[N/2 partitions occupied by points in Tm]

= 1 −
N∑

k=N/2

(
n

k

)
Pr[k partitions unoccupied]

≥ p1


1 −

N∑
k=N/2

(
n

k

) (
1 − k

N

)√
αN




≥ p1


1 −

N∑
k=N/2

(
n

k

)
1

22N




≥ p1(1 − 2−N )

Hence, with probability p2 ≥ 1 − 2 exp(−N/8), there are at least N/6 points
in N(0) ∩ (A ∪ A0). By the Chernoff bound again, we find that the probability
that more than N/12 of these are in A0 is exp(− 2

m (N/12−1/2)2) < exp(−N/8),
so, with probability at least 1−3 exp(−N/8), there are N/12 points in N(0)∩A,
each with expected degree at least πD/2 in T .

Lastly, by another application of the Chernoff bound, the probability that the
degree of any such point is less than D is exp(−1

2N(1 − 2/π)2) < exp(−N/20).
Thus, with exponentially high probability 1 − (3 +N/24) exp(−N/20), for C =

1
216/33n

−5/6α−1/2, and any D in the above specified range, the probability that a
randomly chosen point in T has degree at least D is at least N/24n = CD−1/6.
That is, the degree distribution is lower-bounded by a power law at least up to
a constant power of n.

3 Note that N = Θ(D−1/6n1/6α−1/2) = Ω(nε/6). Also, since the analysis here assumes
N ≥ 1, it only applies for D ≤ n/(2048α3).
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Allowing p0 to be placed closer than 2/α from the border causes only a
fraction of the annuli to be within the region for some values, but since at least
a quarter of each annulus will always be within the region, N changes only by
a small constant factor. To extend the above argument to α = o(

√
n), the outer

radii of A and A′ would have to be reduced, making the ring thinner and allowing
us to partition it into asymptotically more sectors. However, much fewer of them
will be occupied, leading to a decrease in β.

2.2 Experiments

An implementation of both this model and several natural variations on it has
shown that the cumulative density function (c.d.f.) of the degree distribution
produced indeed appears to be a power law, as verified by a good linear fit of
the logarithm of the c.d.f. with respect to the logarithm of the degree for all
but the highest observed degrees. Using n = 100, 000 and α ≤ 100, the β values
observed from the slope of the linear fit ranged approximately between 0.6 and
0.9. When we used higher values of α, the range of D where the c.d.f. exhibited
linear behavior shrunk too much to allow good estimation of β.
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A degree c.d.f. generated at n=100,000, alpha=4

Fig. 3. c.d.f. and the associated tree generated for α = 4 and n = 100, 000 (only the
first 10, 000 nodes are shown)

The c.d.f. generated for 2 tests are shown in the Appendix. Specifically, Fig-
ures 3 and 4 show the c.d.f. for n = 100, 000 and α = 4 and α = 20 (the straight
line shown is not actually a linear fit of the entire data set, but visually approx-
imates a large part of the data). We also show the associated trees. (Actually
due to enormous (postscript) file sizes, these are only the partially trees T10,000.)
The full trees (which do not differ substantially) and a more complete set of
experimental results can be found in
http://research.csua.berkeley.edu/˜alexf/hot/.
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A degree c.d.f. generated at n=100,000, alpha=20

Fig. 4. c.d.f. and the associated tree generated for α = 20 and n = 100, 000 (only the
first 10, 000 nodes are shown)

Tests with varying values of n and fixed α produced consistent values for β
throughout, as expected.

Furthermore, replacing the “rooted” hj centrality measure with other alter-
natives mentioned in the introduction also produced power-law behavior in the
c.d.f., with very similar values for β. Also, the “maximum hops” centrality mea-
sure, which is identical to the “rooted” measure provided that the first node
remains the global minimum of hj , while being more decentralized (and thus
better mirroring a real network), was indeed observed to retain p0 as the “most
central” node in more than 75% of the cases.

Clearly the experiments suggest sharper power laws than our theoretical
results and they also seem to occur for much wider range of the parameters. Our
proofs could in fact be improved somewhat to give tighter results but we opted
for simplicity.

It is straightforward to extend the proof of the main theorem (Theorem 1)
to higher dimensions and other metrics —with different constants of course.
The experiments indeed verify that the power law behavior also holds when
the 2-dimensional square was replaced by a circle, as well as by hypercubes
or hyperspheres in R

d for various d ≥ 2 with the Li (for various i ≥ 1) or L∞
metrics. Interestingly, one-dimensional domains do not seem to give rise to power
laws.

3 A Model of File Creation

Suppose that we are given n positive real numbers p1, . . . , pn, intuitively captur-
ing the “popularity” of n data items, the expected number of times each will be
retrieved. We wish to find a partition Π of the items into sets so as to minimize
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min
Π

[∑
S∈Π

|S| ·
∑
i∈S

pi

]
+ α · |Π|. That is, the trade-off now is between transmis-

sion costs and file creation overhead, with α capturing the relative importance
of the latter. It is very easy to see the following:

Proposition 1. The optimum solution partitions the pi’s sorted in decreasing
order, and can be found in O(n2) time by dynamic programming.

It is shown by a rough calculation in [2] that, if the pi’s decrease exponentially,
or polynomially, or according to a “Gaussian” exp(−ci2) law, then the optimum
file sizes obey a power law.

In this section we prove a different result, starting from the assumption that
the pi’s are drawn i.i.d. from a distribution f .

We start with two inequalities capturing certain properties of the optimum
solution. Suppose that the partitions S1, . . . , Sk have sizes si = |Si|, and that
the average item in Si is ai. It is not hard to see that the following is true:

Lemma 3. si + si+1 ≥ √
α/ai, and si ≤ √

2α/ai.

The proof uses that, by optimality, it is not advantageous to merge two sets,
or to split one in the middle.

Consider now the cumulative distribution Φ of f , and its inverse Ψ . That is,
Ψ(x) is the least y for which Pr[z ≤ y] ≥ x. It is useful to think of Ψ(y/n) as the
expected number of elements with popularity smaller than y. Let g = Ψ(log n/n).

Lemma 4. Almost certainly in the optimum solution there are at least
y/2

√
2α/g sets of size at least

√
α/2Ψ(2y/n)).

Sketch of proof: With high probability, the popularity of the smallest element
is no bigger than g, and, for large enough y ≤ n, there are at least y elements
with popularities smaller than Ψ(2y/n). By the previous lemma, the sets that
contain these elements have sizes that satisfy si + si+1 ≥ √

α/Ψ(2y/n) and
si ≤ √

2α/g. Thus, these elements are divided into at least y/
√

2α/g sets (by
the second inequality), half of them of size at least 1

2

√
α/Ψ(2y/n) (by the first

inequality). ✷

From this lemma we conclude the following for the distribution of file sizes:

Pr[size of a file ≥ 1
2

√
α/Ψ(2y/n)] ≥ y/2n

√
2α/g.

Now set x = 1
2

√
α/Ψ(2y/n) or Ψ(2y/n) = α/4x2 or 2y/n = Φ(α/4x2) or

y = nΦ(α/4x2)/2. Therefore we have

Theorem 2. In the distribution of file sizes induced by the optimum solution,

Pr[size of a file ≥ x] ≥ Φ(α/4x2)
√
g/32α.

It follows that, with high probability, the file sizes are power-law distributed
whenever limz→0 Φ(z)/zc > 0 for some c > 0; this condition does not hold only
for distributions f that are extremely slow to start at zero. For example, any
continuous distribution f that has f(0) > 0 (such as the exponential, normal,
uniform, etc.) gives a power law.
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4 Discussion and Open Problems

We have observed that power laws can result from trade-offs between various
aspects of performance or fitness that must be optimized simultaneously (deploy-
ment vs. operational costs in one example, file creation overhead and transmis-
sion costs in another). In contrast, when the trade-off is weak (in that one of the
criteria is overwhelmingly important), exponentially concentrated distributions
result. This seems to be a new genre of a rigorous argument predicting power
laws. Needless to say, our network model does exhibit a behavior of the form
“the rich get richer,” just like many previous models of such phenomena:Nodes
that arrived early are more likely to both have high degree and small hop cost,
and thus to attract new nodes. The point is, in our model this is not a primi-
tive (and hard to defend) assumption, but a rather sophisticated consequence of
assumptions that are quite simple, local, and “behavioral.”

By extending our tree generation algorithm to non-tree graphs (attach each
arriving node to the few most advantageous nodes, where the number of new
edges is appropriately distributed to produce graphs with the correct average
degree > 1) we obtain an interesting network generation model, about which we
can prove next to nothing. However, it was suggested to us by Ramesh Govindan
[7] that the graphs produced by this more elaborate model are passably Internet-
like, in that they seem to satisfy several other observed properties of the Internet
graph, besides the degree distribution.

It would be very interesting to extend our results to other definitions of the
“hop” cost, and to strengthen them by proving stronger power laws (bigger ex-
ponents than we can prove by our simple techniques, hopefully closer to the ones
observed in our experiments). It would be wonderful to identify more situations
in which multi-criterion optimization leads to power laws, or, even more ambi-
tiously, of generic situations in which multi-criterion optimization can be proved
sufficient to create solutions with power-law-distributed features.

Finally, [5] observed another intriguing power law, besides the one for the
degrees analyzed here: The largest eigenvalues of the Internet graph appear to
also fit a power law. In joint work with Milena Mihail [11], we have discovered
a way of explaining the power law distribution of the eigenvalues. Briefly, it is
a corollary of the degree distribution: If a graph consists of a few nodes of very
degrees d1 ≥ d2 ≥ · · · ≥ dk plus a few other edges, then with high probability
the k largest eigenvalues will be about

√
d1,

√
d2, . . . ,

√
dk. Indeed, in the power

law observed in [5] the exponent of the eigenvalues are roughly half those of the
degrees. The small difference can be explained by the fact that [5] examines only
the 20 highest eigenvalues; these correspond to extreme degrees that do not fit
exactly the eigenvalue power law (as is quite evident in the figures in [5]).
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