
Graph Coloring with Quantum Heuristics

Alex Fabrikant
EECS Dept., UC Berkeley

Berkeley, CA 94720

Tad Hogg
HP Labs

Palo Alto, CA 94304

Abstract

We present a quantum computer heuristic search algorithm
for graph coloring. This algorithm uses a new quantum
operator, appropriate for nonbinary-valued constraint satis-
faction problems, and information available in partial col-
orings. We evaluate the algorithm empirically with small
graphs near a phase transition in search performance. It im-
proves on two prior quantum algorithms: unstructured search
and a heuristic applied to the satisfiability (SAT) encoding
of graph coloring. An approximate asymptotic analysis sug-
gests polynomial-time cost for hard graph coloring problems,
on average.

Introduction
To date, quantum computers [5, 7] appear to give substan-
tial improvement for only a few problems, most notably in-
teger factoring [21]. At first sight, this is puzzling since
quantum computers can evaluate all combinatorial search
states in about the same time a conventional machine eval-
uates just one. Hence one might expect high performance
for problems having a rapid test of whether a state is a so-
lution, i.e., NP problems, which are the main computational
bottleneck in numerous AI applications.

Unfortunately, beyond the difficulties of building quan-
tum computers, it appears impossible to reliably and rapidly
extract an answer from this simultaneous evaluation for the
worst cases of NP problems [1]. Of more practical inter-
est is the average performance of quantum algorithms that
use problem structure to guide search [11, 2, 13, 16, 6]. As
with conventional heuristics, such algorithms are difficult
to evaluate theoretically. Moreover, empirical evaluation is
also limited because, currently, quantum algorithms must be
simulated on conventional machines, exponentially increas-
ing the required memory and run time. Hence, quantum
heuristics can only be tested on much smaller problems than
is possible for conventional algorithms.

Despite these difficulties, insights into the structure of NP
problems, particularly when formulated as constraint satis-
faction problems (CSPs), help understand the capabilities
of quantum computers for typical searches. One significant
insight is the analogy between CSPs and physical phase
transitions [4, 23, 19], which has led to new heuristics for
conventional machines [12, 8, 17]. However, conventional
algorithms sample only a tiny, and deliberately unrepre-
sentative, fraction of the search states. Thus insight into
average properties can be difficult to exploit with conven-
tional machines, particularly when the properties also have

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

large variance, as is the case with phase transitions. On the
other hand, quantum computers, by operating on the entire
search space at once, can directly utilize knowledge of the
average properties of search states. More broadly, quan-
tum algorithms may motivate studies that provide new in-
sight into typical search structure, particularly correlations
among search state properties that hold on average over the
whole space but not strongly enough on individual states for
conventional heuristics to exploit. Gaining such insight is a
fundamental concern for AI search applications, in contrast
to the worst-case studies of theoretical computer science,
including much of the work on quantum computation.

This paper illustrates these ideas with a quantum heuris-
tic search algorithm for graph coloring. Graph coloring is
an interesting problem for quantum algorithm design due to
its structured constraints, solution invariance under permu-
tation of colors, and nonbinary-valued variables. It thus pro-
vides additional symmetry and representational issues com-
pared to prior studies for less structured problems such as
satisfiability. Nevertheless, graph coloring is simple enough
that its search space structure and phase transitions are well-
understood. The operators and representations we introduce
may also be useful for other, more structured, problems.

Graph Coloring

Graph coloring requires assigning one of � colors to each
node in a graph so that no edge links nodes with the same
color. We consider the NP-complete case of ����� .

As with many search problems, graph coloring exhibits
a phase transition in solubility. In our studies, we use the
random graph ensemble where each graph with � edges
and � nodes is equally likely to be selected. For large � the
transition is near �	��

�
���� , so the graphs have average
degree 4.5. However, for smaller � the threshold occurs at
somewhat smaller ratios of ����� . Thus, for each � we use
� for which about ����� of random graphs are soluble.

Typically, heuristics are exponentially slower near this
transition point than on either side. Generating instances
near the transition gives a high concentration of hard in-
stances for testing heuristics. While we adopt this proce-
dure in this paper, a broader evaluation would also use hard
instances found away from the transition and, more impor-
tantly, examples drawn from real-world applications. The
latter include graphs with various forms of hierarchical clus-
tering or small-worlds structure, which are not readily ex-
hibited in the small graphs feasible to simulate in our stud-
ies.

Algorithm
Quantum computers operate on superpositions of all search
states. A superposition corresponds to a state vector, con-
sisting of a complex number, called an amplitude, for each
search state. From an algorithmic perspective, a quantum
computer is a device for performing some rapid operations
on the state vector. These operations are matrix multipli-
cations that have only polynomially growing cost even with
exponentially many states. After a series of such operations,
observing the machine (usually described as “measuring its
state”) probabilistically produces a single search state, with
probability equal to the square of the magnitude of ampli-
tude associated with that state. The measurement destroys
the superposition, so obtaining another state requires repeat-
ing the quantum operations from scratch. A good quantum
algorithm is a series of operations on the state vector giv-
ing large amplitudes for desired states (e.g., solutions to a
search problem). Measurement will then be likely to pro-
duce one of these desired states.

Our graph coloring algorithm has the same general form
as unstructured search [10] and heuristic methods [13, 16]
for satisfiability (SAT) and traveling salesman (TSP) prob-
lems. The quantum computer acts as a coprocessor rapidly
executing an inner loop, or trial, of the overall algorithm,
while a conventional machine examines the trial result, con-
tinuing with additional trials until a solution is found. The
algorithm is incomplete, i.e., cannot determine that no solu-
tion exists, so we focus on soluble problems.

Representing Graph Coloring

The operations available with quantum computers are most
naturally treated as acting on superpositions of strings of �
bits (each of which is called a “qubit”). Superpositions in-
volve the
�� possible values for these bits. Applying this
framework to graph coloring requires choosing a represen-
tation for the search states, i.e., colorings for the graph, with
such a bitstring. The representation should enable efficient
implementation of the operations required for the heuristic.
In our case, these operations evaluate the number of con-
flicts in a given state and mix amplitudes of different states
by multiplication with a matrix based on a distance measure
between search states.

3-coloring an � -node graph has several natural represen-
tations. With ��� possible colorings, the most compact bit-
string representation uses � �����
	��
� ���
� qubits. In this
representation, the distance between states is not a simple
function of their bitstrings so it is unclear whether distance-
based mixing can be efficiently implemented.

A second representation consists of the powerset of all
possible (variable, value) pairs, using � � qubits. This rep-
resentation easily encodes the property, used for pruning
in backtrack-style searches, that a conflict in a partial col-
oring implies a conflict in all its extensions. Our limited
evaluation of this encoding shows its potential benefit does
not compensate for the disadvantage of its expanded search
space.

We introduce a third representation, well-suited for 3-
coloring. Specifically, we associate with each node one of

four values, 0,1,2,3, where 0 indicates the node is uncol-
ored, and the other values denote the assignment of a spe-
cific color to the node. These values need two bits per node,
for a total of � �
�� qubits. E.g., with four nodes, the
bitstring � � ����� ����� represents the state with node 1 uncol-
ored, and nodes 2,3,4 assigned colors 1,2,3, respectively.
While adding partial colorings expands the search space, it
also allows the algorithm to use their conflict information.
As detailed below, this representation readily implements
mixing based on the 2-bit edit distance, defined as the num-
ber of consecutive bit pairs (each representing a node color-
ing) that are distinct between two strings. For example, the
distance between ��� ����� ����� and ����� ��� � ��� is two, since
the second and last pairs of the two bitstrings are different.
This distance is a 2-bit version of the usual Hamming dis-
tance.

In graph coloring, any permutation of a solution’s colors
gives another solution. In conventional search, this sym-
metry can reduce the size of the search space by fixing the
color choices for two nodes linked by an edge. This could
also be incorporated in the representations for the quantum
heuristic, but treating two nodes differently from the others
complicates the analysis, so is not included in our algorithm.

Trials
Let �������� be the amplitude of state � after step � of a trial. A
single trial consists of the following operations:

1. initialize the amplitude equally among the states, i.e., set
the amplitude � � �!�� �
#"$�&% �

for each of the
�� states � .

2. for steps 1 through ' , adjust amplitude phases based on
state costs and then mix the amplitudes giving

� �)(*� �,+ �-(*�/.0�)(*� � � �1+ ��23�4.0��23� � � �!�!5 (1)

where + �6�7� and . ����� are the mixing and phase adjust-
ment matrices for step � , described below.

3. measure the final superposition, giving state � with prob-
ability 8:9;�7< �>= � �)(*�� = � .

A conventional machine then tests whether the trial’s re-
sult � is a solution and, if not, starts another trial. The proba-
bility to find a solution with a single trial is .@?�A1B C �ED � 8:9F�G<
where the sum is over all solutions � . The expected number
of trials to find a solution is ��� . ?HA*B C , giving an expected cost
of ' � . ?�A1B C steps, each of which is comparable to a step in a
convention heuristic since it requires evaluating the conflicts
in a state. This cost measure, used in the results given below,
thus gives a good indication of the scaling of the cost with
problem size and a relative comparison with conventional
methods. More specific cost comparisons depend on the
clock rates of quantum machines and how well compilers
can optimize the operations, which remain open questions.

Phase Adjustment and Amplitude Mixing
The phase adjustment matrix . is diagonal and depends
on the problem instance, with .&I1I �KJML#N:9�OQPSRT9FUV9�WV<*< where
UV9�WV< is the cost associated with state W and R$9HUM< a function
described below. We define a state’s cost to be the sum of

the numbers of 1) uncolored nodes and 2) edges connecting
nodes of the same color. A solution is a zero-cost state.

The mixing matrix + is defined in terms of two simpler
matrices: + ������� . The Walsh transform � has entries

� I � �
 "$� % � 9�� �7<
� I	� � �

(2)

for states W and � , where = W�
 �#= is the number of 1-bits the
states have in common. The matrix � is diagonal with el-
ements depending on the number of colored nodes in the
state � . Viewed as a bitstring this is equivalent to count-
ing nonzero consecutive pairs =6= �#=6= , e.g., =
= � � ����� �����#=
= � � .
That is, � �/� � JML N 9�OQP
� 9*=6= �
=6= <3< with � 9�� < a function de-
scribed below. Quantum computers can efficiently compute
the Walsh transform [2, 15] and hence + even though they
involve exponentially many states. Using Eq. 2 shows the
mixing matrix element + I � for two states W and � has the
form �
� � I�� � � , i.e., depends only on the distance between the
states, in analogy with conventional heuristics that examine
neighbors of a given state to determine the next state to try.
Because the representation allows for uncolored nodes, it
is also analogous to dynamic backtracking [9] where vari-
ables can be instantiated in different orders. Unlike these
conventional methods, however, + has contributions from
all distances, not just neighbors. Thus the quantum oper-
ator incorporates information from the full search space in
determining amplitudes for the next step.

Our 3-coloring algorithm uses the 2-bit edit distance, but
generalizes to � -bit edit distance, allowing efficient imple-
mentation of mixing matrices based on distances between
groups of � -bits at a time. This generalization is suitable for
CSPs with more than four values per variable.

Tuning the Algorithm
Completing the algorithm requires explicit forms of RT9FUM<
and � 9�� < for each step, and a choice for the number of
steps ' . Ideally, these values would be selected to maximize
a trial’s success for the given problem instance. Unfortu-
nately, this is not practical since it requires detailed prior
knowledge about the solutions of that instance. Instead,
as with conventional heuristics, we find choices that work
well on average for the ensemble of hard random graphs
discussed above.

RT9FUM< and � 9��M< can be arbitrary efficiently-computable
functions. As one example, the unstructured search algo-
rithm [10] uses R$9 �
< � � , � 9 ��< � � and all other RT9FUM< and
� 9��M< values equal to zero. Based on a sample of small prob-
lems, functions that vary linearly with cost, distance and
step give almost as good performance as allowing arbitrary
functions, a property also seen with the SAT heuristic [13].
Thus, for simplicity, we restrict attention to linear functions.
An overall phase factor has no effect on the probability to
find a solution, so we drop the constant terms in the linear
behavior as a function of cost and distance. Thus, for step �
of the algorithm, we take R$9HUM< � R � U and � 9��M< ��� � � with
R � � 2(

� 939;��� �G< �M'
< and � � � 2(� 939;��� �G< �M'
< where

� 9��T< � �
�
� 9/����� < � 2 (3)

� 9��T< � � �
� 9/����� <�� 2

5 6 7 8 9 10 11 12
n

5

10

20

50

100

200

c
o
s
t

SAT

Brelaz

amplify

Figure 1: Median search costs vs. � . Quantum search using
different phase parameter choices: optimized for each � (solid
black), using ���! parameters (thick gray) and from the approx-
imate theory (dashed black, see Section “Asymptotic Behavior”).
Also shown, with labels next to the curves, are amplitude ampli-
fication on the smaller search space of the compact representation
(thin gray), mapping to SAT (dashed gray, using "$#%�'&)(+*,*-* ,"�.��0/213(4-5,6 , 7 # �98)(6-:,6-6 and 7
.;�<:3(&)*=:) and the Brelaz
heuristic (dotted black), whose cost grows nearly linearly for these
small problems. Graphs for �>�?5 to 12 used 7, 10, 12, 14, 16, 18,
20 and 22 edges, respectively. Error bars show the 95% confidence
intervals [22, p. 124]. For each � , the same sample of graphs was
used for each method shown here.

vary linearly with the step. This choice allows explicit eval-
uation of the mixing matrix elements, giving

� � ��
 " � ��@ ���BADCFE)GIH)J � @ � � �)ADCFE)GIH)J �#" � (4)

for step � . We can determine good phase parameters,�
� 5 � 2 5 � � 5 � 2 , from numerical optimization on a sample of

graphs or with the theory described below.
With exponentially many steps, each trial can have

. ?HA*B CLK � using the unstructured algorithm [10]. Empir-
ical evaluation for small � shows using problem structure
allows better performance with a fixed number of steps, so
we use ' � � � . However, somewhat fewer steps may give
better performance for the smallest sizes we consider. The
approximate theory described below indicates larger prob-
lems will likely require more steps for best performance, but
growing only polynomially with � .

Behavior
We numerically optimized the phase parameters for each �
for a sample of 10 random soluble graphs. We then tested
the heuristic with an independent sample of 200 graphs for
each � . Fig. 1 compares the resulting performance to the un-
structured algorithm applied to the compact representation
(i.e., the first one described in Section “Representing Graph
Coloring”), without assuming the number of solutions is

0

5

10

15

cost

0

2

4

6

8

10

step

0
0.1
0.2
0.3
0.4
P

0

5

10

15

cost

Figure 2: Amplitude shift for a graph with ����* 8 ��� ��* 6 and
12 solutions. The plot shows the total probability in states with
each cost for each step of a trial. Shading shows the relative devi-
ation among the amplitudes for states with each cost, with lighter
shadings indicating larger deviations. The deviation is relatively
small for dominant cost values, i.e., near the peak in the proba-
bility for each step. This used the optimal parameters found for���' : " # �'1)(4,8,1D: , " . � / : (+* :,8 & 4 , 7 # � 8)(� & � 5,5 and7
. �L*-(&D8-5-: .

known a priori [2]. Even though our heuristic operates in
a larger search space, it has lower cost and, significantly,
the cost grows more slowly. The figure also shows a con-
ventional backtrack search using the Brelaz heuristic [3].
For such small graphs, this heuristic almost always gives
correct choices, avoiding any backtracking. A more signif-
icant comparison between the cost growth rates of classical
and quantum methods requires larger problems to show the
exponential growth of the Brelaz cost, beyond the current
range of feasible simulations.

Like quantum heuristics for SAT and TSP, the steps grad-
ually shift the cost distribution toward lower costs (Fig. 2).
Thus, if a trial does not yield a solution, it is still likely to
yield a low-cost state, unlike unstructured search.

Numeric optimization of the phase parameters is costly
so it is useful to have a single set of parameters with rea-
sonable performance for larger problems. Fig. 1 compares
the performances using parameters optimized at each � and
parameters optimized for � ��� but used for all � . For all
����	� tested, the drop in average performance is under � ��� ,
with no visible divergence for larger problems.

SAT Mapping

Graph � -coloring has a natural mapping to � -SAT: each
node maps to � variables, each denoting one color for that
node, and constraints ensure each node has exactly one
color and each edge connects nodes of different colors.
Since quantum heuristics for � -SAT perform well on av-
erage [13], another approach to 3-coloring is mapping to
3-SAT and applying the 3-SAT heuristic. This map uses
� ����� , giving a larger search space than used with our
graph-coloring heuristic.

The ensemble of random graphs does not map to the uni-
form random ensemble of SAT problems used to determine
phase parameters for the quantum SAT heuristic. Thus we
optimized the parameters for a sample of SAT problems cre-
ated from coloring problems. Optimization became pro-
hibitively expensive when ��
�� . Considering the scal-
ing results described above, we chose to compare perfor-
mance of the coloring and SAT heuristics with parameters
optimized at ���	� for each. Fig. 1 shows the SAT heuristic
lags behind the coloring heuristic. Thus our coloring heuris-
tic uses graph coloring structure more effectively than is
possible after transforming to SAT. Nevertheless, even the
limited use of structure with the SAT mapping gives costs
that appear to grow more slowly than unstructured search,
again in spite of the larger search space.

Estimating Behavior for Large Problems
How well can quantum algorithms perform for large
search problems? Ignoring problem structure gives only a
quadratic improvement, far less than the improvement from
exponential to polynomial cost for factoring [21]. Based on
small cases, our graph coloring algorithm improves on the
performance possible from unstructured algorithms but it is
unclear how well it works for larger problems.

An Approximate Description
Observations with small problems indicate states with given
numbers of uncolored nodes and conflicts have similar am-
plitudes. This property becomes more pronounced as �
increases for the states dominating the probability at each
step. Among states with � � uncolored nodes and U conflicts,
as ��
�� the overwhelming majority have nearly equal
numbers of nodes with each color and about one-third of the
conflicts involving each of the three colors. This motivates
grouping the states according to the values �� � 9 � � 5 UM<
and approximating the amplitudes for such states as equal
to their average value, i.e., � �6�7�� K�� ������� , where � is the
average amplitude of all states with given �� .

Such “mean-field” approximations are often quite suc-
cessful for large statistical systems [20]. In our case, the dis-
tribution of costs among states becomes narrower as prob-
lem size increases, leading to increasingly peaked versions
of the distribution shift shown in Fig. 2. This approach also
applies to a similar heuristic for random � -SAT [13].

The algorithm relies on the correlation of distance be-
tween states and their costs: nearby states tend to have many
of the same conflicts and hence similar costs. We can exploit
this by mixing amplitudes primarily among nearby states.
Provided '�� � , Eq. 4 gives � � equal to an irrelevant overall
constant times 9I��O��#< � , with � � P
� � 9��7'#< , which decreases
rapidly with � . Since the number of states at distance � from
a given state is proportional to � � , mixing is mainly among
states at distances � �	� 93�7< when '�� � or larger. In partic-
ular, this means a polynomial growth in the number of steps
is sufficient to ensure mixing mainly among nearby states.

With this approximation, up to an irrelevant overall nor-
malization and phase, step � of Eq. 1 gives average ampli-
tude of states with �� �>9H� � 5 � < , namely � �6�7��! , in terms of

the averages for the prior step as�
� � ��

9���O�� < � ADCFE�� ��� � ��� � � �6� " 2/��� � 9 �� 5 �� 5 �
< (5)

where � is the average, over random 3-coloring problems
with given � and � , of the number of states � with given ��
values at distance � from a state described by �� . Note R
and � depend on the step � .

We allow the phase adjustment to depend separately on
the number of conflicts U and number of uncolored nodes
� � instead of just their sum. Again we find a linear form is
sufficient to give good performance, i.e., for step � we take
R$9HU 5 � � < � R � U �	�

� � � with
�

� � 2(�
 939;� �E�G< �M'
< a new
parameter not necessarily equal to R � and
 9��T< has the same
linear form as

� 9�� < in Eq. 3 with parameters
 � 5
 2 . In
contrast, for the small problems described above, we treated
both contributions to the cost the same, i.e., we took

� � R ,
but the analysis described below suggests this is not the best
choice for larger problems.� characterizes pairs of states and their conflicts for ran-
dom graphs, independent of the quantum algorithm. It in-
volves a product of binomial distributions, one for each of
the 3 colors, of the number of edges linking nodes with the
same colors. Evaluating � is the key use of problem struc-
ture for analyzing the quantum algorithm, and is readily de-
termined for random graphs. This approximation applies to
any ensemble of graphs for which � can be determined.

Asymptotic Analysis
Eq. 5 simplifies when mixing matrix elements decrease
rapidly with � . In this case, those states giving the most
contribution to � �����I , with state W described by �� , have
� � K � � and U K�� . Hence, in Eq. 5 we can use a lin-
earized expansion around the dominant values of � � and

� to approximate � ��� " 2/��� by � �6� " 23��! � � "�
�� ��� "$��� where
� and � are complex numbers characterizing the behav-
ior of the average amplitudes close to the dominant states
at step � �K� . The initial amplitudes, which are the same
for all states, correspond to � ��� � � . Small values of
= � = and = � = have amplitudes concentrated in states with few
conflicts and few uncolored nodes, respectively. Thus good
performance, i.e., . ?�A*B C K � , in this approximation requires
both � and � to be small at the end of a trial, specifically
= � = 5 = � =�� ����� � .

With this linearization, Eq. 5 relates the values of � 5 �
at step � to those of the prior step. When ' is large, the
change in values from one step to the next is � 93��� '#< so we
can define smooth functions � 9��T< 5 � 9�� < with � �,� � ' and
the relation of values from one step to the next becomes a
pair of differential equations for � and � .

Asymptotic Behavior
For most phase parameter choices, numerical solution of the
differential equations have = � = and = � = nonzero for all steps,
i.e., for ������� � . In such cases, the dominant states have
a nonzero fraction of uncolored variables and conflicting
edges. However, for given � , numerical evaluation iden-
tifies some phase parameters giving � 93�7<���� 93�7<�� � .

0.2 0.4 0.6 0.8 1
Re

0.1

0.2

0.3

Im

Figure 3: Behavior of ����� � (solid) and !"��� � (dashed) in the
complex plane as � ranges from 0 to 1. The initial condition is��� 8#� �$!%� 8&� � * and both values approach 0 along the positive
imaginary axis as �	' * . The parameters are " # � :3(5 &- D4 ,"�. � / : (*=:,8,8 , (# � :3(:-5,:3* , (. � /�*-(*,* D: , 7 # � 8)(D5 1)* and7 . � *-(*=4,5 � . The arrow indicates direction of change along the
curves as � increases.

In this case, the discrete algorithm steps give final values
for � 5 � of size � 93��� '#< , which for '��)� � predicts the
dominant states have the numbers of uncolored nodes and
conflicts going to zero as � increases, so .@?�A1B C K � giving
overall cost of � 9
'#< steps which is polynomial in � .

Fig. 3 shows the behavior for one such set of parameters.
For small graphs, Fig. 1 shows the performance of the algo-
rithm with these parameters and using the optimal number
of steps for each � . That is, we examined the behavior for
a few different values of ' , in the range � �
 to � , and show
the values giving the minimum median cost, i.e., ' � . ?�A*B C .
This gives ' � � for ��� � , ' � � for � � � 5 � � � 5+* and
' � � for � �-, 5 � � � 5 ��
 . Thus the best choice of ' appears
to grow somewhat slower than ' � � 9.� � < , a behavior also
seen with solving SAT problems [14]. As one might expect,
performance is worse than using parameters optimized for
small graphs. More significantly, the small sizes preclude a
good evaluation of the asymptotic scaling behavior and the
accuracy of the mean-field approximation.

By contrast, the unstructured search algorithm [10] gives
a similar high concentration of amplitude in solutions but
only after exponentially many steps. However, this result for
the unstructured algorithm is exact, unlike the approximate
evaluation of the heuristic method discussed here.

Discussion
Although the analysis predicts polynomial average cost, the
accuracy of the mean-field approximation is an open ques-
tion. Since the derivation requires � � � � , empirical eval-
uation, limited to � K � � , does not effectively test the pre-
diction. Nevertheless, this discussion indicates the possi-
bility for polynomial average cost with suitable tuned pa-
rameters. The phase parameters giving � 9/�G< �/� 93�7< � �
according to the approximate theory are not unique and the
number of steps, ' , could be any power of � without pre-
cluding polynomial cost. With further analysis one could es-
timate the approximation error and select from among these
possibilities those with the smallest error estimate. More
broadly, instead of using only one choice for algorithm pa-
rameters, a portfolio of several choices gives better tradeoffs
between expected performance and its variance [18].

Our mixing matrix uses the 2-bit distance, matching the
structure of our problem representation. One could also try
mixing matrices less directly connected to the structure. For
instance, mixing based on the Hamming distance performs
only slightly worse (with separately optimized parameters).
Unstructured search [2] also shows this behavior. In our
case, this can be understood from the heuristic’s reliance
on the correlation between state costs and distance, particu-
larly for nearby states. The 2-bit and Hamming distances are
strongly correlated for nearby states, leading to similar val-
ues for the mixing matrix. This highlights the possibility of
designing algorithms based on matrices matching problem
structure while still being free to use other matrices for the
actual implementation, provided they have similar behav-
iors for nearby states. This flexibility may simplify eventual
hardware implementations.

Our algorithm uses quantum coherence for only one trial
at a time, reducing required hardware capabilities compared
to the unstructured algorithm’s need for exponentially long
coherence. However, if sufficiently long coherence times
become available, amplitude amplification operating on our
algorithm gives a quadratic speedup to the results reported
here [2]. In either case, algorithms using problem structure
make significantly better use of the quantum machine.

In summary, we presented a quantum algorithm based on
a generalized Hamming distance and using a simple rep-
resentation including unassigned values. These features
allow the algorithm to exploit more structure available in
graph coloring than is possible by mapping it to satisfiabil-
ity. Our approximate analysis for average behavior of large
problems indicates with proper the algorithm performs well
by relying on statistical regularities throughout the search
space. A definitive evaluation of this possibility for ran-
dom and more structured graphs is an important open prob-
lem. More generally, this work illustrates how knowledge of
problem structure from studies of CSPs can be incorporated
in new quantum algorithms.

References

[1] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and
Umesh V. Vazirani. Strengths and weaknesses of quantum
computing. SIAM Journal on Computing, 26:1510–1523,
1997.

[2] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum
counting. In K. Larsen, editor, Proc. of 25th Intl. Colloquium
on Automata, Languages, and Programming (ICALP98),
pages 820–831, Berlin, 1998. Springer. Los Alamos preprint
quant-ph/9805082.

[3] Daniel Brelaz. New methods to color the vertices of a graph.
Communications of the ACM, 22(4):251–256, 1979.

[4] Peter Cheeseman, Bob Kanefsky, and William M. Taylor.
Where the really hard problems are. In J. Mylopoulos and
R. Reiter, editors, Proceedings of IJCAI91, pages 331–337,
San Mateo, CA, 1991. Morgan Kaufmann.

[5] D. Deutsch. Quantum theory, the Church-Turing principle
and the universal quantum computer. Proc. R. Soc. London
A, 400:97–117, 1985.

[6] Edward Farhi et al. A quantum adiabatic evolution algorithm
applied to random instances of an NP-complete problem. Sci-
ence, 292:472–476, 2001.

[7] Richard P. Feynman. Feynman Lectures on Computation.
Addison-Wesley, Reading, MA, 1996.

[8] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby
Walsh. The constrainedness of search. In Proc. of the 13th
Natl. Conf. on Artificial Intelligence (AAAI96), pages 246–
252, Menlo Park, CA, 1996. AAAI Press.

[9] Matthew L. Ginsberg. Dynamic backtracking. In Haym
Hirsh et al., editors, AAAI Spring Symposium on AI and NP-
Hard Problems, pages 64–70. AAAI, 1993.

[10] Lov K. Grover. Quantum mechanics helps in searching for a
needle in a haystack. Physical Review Letters, 78:325–328,
1997. Los Alamos preprint quant-ph/9706033.

[11] Lov K. Grover. Quantum search on structured problems.
Chaos, Solitons, and Fractals, 10:1695–1705, 1999.

[12] Tad Hogg. Exploiting problem structure as a search heuristic.
Intl. J. of Modern Physics C, 9:13–29, 1998.

[13] Tad Hogg. Quantum search heuristics. Physical Review
A, 61:052311, 2000. Preprint at publish.aps.org/eprint/gate-
way/eplist/aps1999oct19 002.

[14] Tad Hogg. Solving random satisfiability problems with quan-
tum computers. Los Alamos preprint quant-ph/0104048,
2001.

[15] Tad Hogg, Carlos Mochon, Eleanor Rieffel, and Wolfgang
Polak. Tools for quantum algorithms. Intl. J. of Modern
Physics C, 10:1347–1361, 1999. Los Alamos preprint quant-
ph/9811073.

[16] Tad Hogg and Dmitriy Portnov. Quantum optimization.
Information Sciences, 128:181–197, 2000. Los Alamos
preprint quant-ph/0006090.

[17] Eric Horvitz et al. A Bayesian approach to tackling hard
computational problems. In Proc. of the 17th Conference on
Uncertainty and Artificial Intelligence, 2001.

[18] Sebastian M. Maurer, Tad Hogg, and Bernardo A. Huber-
man. Portfolios of quantum algorithms. Physical Re-
view Letters, 87:257901, 2001. Los Alamos preprint quant-
ph/0105071.

[19] Remi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart
Selman, and Lidror Troyansky. Determining computational
complexity from characteristic “phase transitions”. Nature,
400:133–137, 1999.

[20] Manfred Opper and David Saad, editors. Advanced Mean
Field Methods: Theory and Practice. MIT Press, Cambridge,
MA, 2001.

[21] Peter W. Shor. Algorithms for quantum computation: Dis-
crete logarithms and factoring. In S. Goldwasser, editor,
Proc. of the 35th Symposium on Foundations of Computer
Science, pages 124–134, Los Alamitos, CA, November 1994.
IEEE Press.

[22] George W. Snedecor and William G. Cochran. Statistical
Methods. Iowa State Univ. Press, Ames, Iowa, 6th edition,
1967.

[23] Colin P. Williams and Tad Hogg. Exploiting the deep struc-
ture of constraint problems. Artificial Intelligence, 70:73–
117, 1994.

