CS 70 SPRING 2007 — DISCUSSION #15 "ANSWER SHEET"

ALEX FABRIKANT

	Need $\mathbb{E}[X]$?	Need $Var[X]?$	Restrictions on X	Synopsis	Proof technique
Markov bound	Yes	No	Non-negative	Definite linear decrease (of $\Pr[X > k\mu]$, as k grows)	If it's very probable that it's much higher than mean, then Pr [low] can't be high enough to average out to the mean.
Chebyshev bound	Yes	Yes	NONE	Definite quadratic decrease (of $\Pr[X - \mu > k\sigma]$, as k grows)	Apply Markov to $Y = (X - \mu)^2$
Chernoff bound	Yes	No	X must be a sum of in- dependent indicators	Definite exponential decrease (of $\Pr[X > k\mu]$, as k grows)	Apply Markov to $Y = \alpha^X$
Law of Large Numbers	Yes	No	X is the average of n i.i.d. variables	Asymptotically , as n grows, X gets asymptotically close to the mean	If variance is finite, use Cheby- shev; else, more complicated
Central Limit Theorem	Yes	Yes	X is the average of $ni.i.d. variables, withfinite expectation andvariance$	Asymptotically, as n grows, distribu- tion of X looks like a normal of width σ/\sqrt{n} around μ	Far beyond CS70 scope

	Pros	Cons
Markov bound	Applies to all non-negative variables	Very weak bound
	Just need to know $\mathbb{E}[X]$	
Chebyshev bound	Applies to all variables!	Major: Weak bound
		Minor: Need to know variance
Chernoff bound	Very strong bound	Sum-of-indicators is a very narrow species of random variable
Law of Large Numbers	(almost just a special case of central limit theorem,	Only asymptotic — "eventually, you'll almost definitely be very
	but doesn't require finite variance)	close to the mean"
		Only applies to average of independent samples from the same r.v.
Central Limit Theorem	Very complete description of the shape of the dis-	On any finite example, you have to $guess$ that n is big enough to
	tribution when n grows asymptotically	make the normal a good <i>approximation</i> . In this class, you can't
		make any definitive statements based on the CLT.
		Only applies to average of independent samples from the same r.v.